Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1980, Volume 25, Issue 4, Pages 683–703 (Mi tvp1225)  

This article is cited in 11 scientific papers (total in 13 papers)

A functional central limit theorem for semimartingales

R. Š. Lipčer, A. N. Širyaev

Moscow

Abstract: Let $X^n$, $n\geqslant 1$, be a sequence of semimartingales with triplets of local characteristics $T^n=(B^n,\langle X^{cn}\rangle,\nu^n)$ and let $X$ be a continuous Gaussian martingale with a triplet $T=(0,\langle X\rangle,0)$. We give conditions on the convergence of the triplets $T^n$ to $T$ which are sufficient for the weak convergence of the distributions of $X^n$ to the distribution of $X$ and for the weak convergence of the finite-dimensional distributions of $X^n$ to the corresponding finite-dimensional distributions of $X$.

Full text: PDF file (1028 kB)

English version:
Theory of Probability and its Applications, 1981, 25:4, 667–688

Bibliographic databases:

Received: 25.03.1980

Citation: R. Š. Lipčer, A. N. Širyaev, “A functional central limit theorem for semimartingales”, Teor. Veroyatnost. i Primenen., 25:4 (1980), 683–703; Theory Probab. Appl., 25:4 (1981), 667–688

Citation in format AMSBIB
\Bibitem{LipShi80}
\by R.~{\v S}.~Lip{\v{c}}er, A.~N.~{\v S}iryaev
\paper A functional central limit theorem for semimartingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 4
\pages 683--703
\mathnet{http://mi.mathnet.ru/tvp1225}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=595132}
\zmath{https://zbmath.org/?q=an:0471.60038|0454.60032}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 4
\pages 667--688
\crossref{https://doi.org/10.1137/1125084}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980MK50200002}


Linking options:
  • http://mi.mathnet.ru/eng/tvp1225
  • http://mi.mathnet.ru/eng/tvp/v25/i4/p683

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Sh. Liptser, A. N. Shiryaev, “On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments”, Math. USSR-Sb., 44:3 (1983), 299–323  mathnet  crossref  mathscinet  zmath
    2. V. V. Lavrent'ev, “The functional central limit theorem for semimartingales taking values in a Hilbert space”, Russian Math. Surveys, 37:4 (1982), 125–126  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. B. I. Grigelionis, K. Kubilyus, R. A. Mikulyavichyus, “The martingale approach to functional limit theorems”, Russian Math. Surveys, 37:6 (1982), 41–54  mathnet  crossref  mathscinet  zmath  isi
    4. È. V. Khmaladze, “Some applications of the theory of martingales to statistics”, Russian Math. Surveys, 37:6 (1982), 215–237  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. S. M. Lozinskii, “On the hundredth anniversary of the birth of S. N. Bernstein”, Russian Math. Surveys, 38:3 (1983), 163–178  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. A. A. Butov, “On the problem of weak convergence of a sequence of semimartingales to a process of diffusion type”, Russian Math. Surveys, 38:5 (1983), 135–136  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. R. Sh. Liptser, A. N. Shiryaev, “Weak convergence of a sequence of semimartingales to a process of diffusion type”, Math. USSR-Sb., 49:1 (1984), 171–195  mathnet  crossref  mathscinet  zmath
    8. Kh. M. Mamatov, “Weak convergence of stochastic integrals with respect to semimartingales”, Russian Math. Surveys, 41:5 (1986), 155–156  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. R. M. Absava, “On the limit distribution of the quadratic deviation for a broad class of estimators of functional characteristics of the distribution law of observations”, Russian Math. Surveys, 56:5 (2001), 973–975  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. A. G. Sholomitskii, “On the necessary conditions of Poisson convergence for martingales”, Theory Probab. Appl., 49:4 (2005), 735–737  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. È. A. Nadaraya, G. A. Sokhadze, P. Babilua, “On some goodness-of-fit tests based on kernel density estimates”, Theory Probab. Appl., 54:2 (2010), 324–333  mathnet  crossref  crossref  mathscinet  isi
    12. È. A. Nadaraya, P. Babilua, G. A. Sokhadze, “On the integral square deviation of one nonparametric estimation of the Bernoulli regession”, Theory Probab. Appl., 57:2 (2013), 265–278  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    13. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:526
    Full text:205
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021