RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2005, Volume 50, Issue 4, Pages 797–806 (Mi tvp136)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Discrete Bessel process and its properties

A. S. Mishchenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper considers a discrete analogue of a three-dimensional Bessel process — a certain discrete random process, which converges to a continuous Bessel process in the sense of the Donsker–Prokhorov invariance principle, and which has an elementary path structure such as in the case of a simple random walk.
The paper introduces four equivalent definitions of a discrete Bessel process, which describe this process from different points of view. The study of this process shows that its relationship to the simple random walk repeats the well-known properties which connect the continuous three-dimensional Bessel process with the standard Brownian motion. Thus, hereby we state and prove discrete versions of Pitman's theorem, Williams theorem on Brownian path decomposition, and some other statements related to these two processes.

Keywords: Bessel process, random walk, discrete analogues, Pitman theorem, Lévy theorem, Williams theorem.

DOI: https://doi.org/10.4213/tvp136

Full text: PDF file (1214 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2006, 50:4, 700–709

Bibliographic databases:

Received: 17.08.2005

Citation: A. S. Mishchenko, “Discrete Bessel process and its properties”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 797–806; Theory Probab. Appl., 50:4 (2006), 700–709

Citation in format AMSBIB
\Bibitem{Mis05}
\by A.~S.~Mishchenko
\paper Discrete Bessel process and its properties
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 797--806
\mathnet{http://mi.mathnet.ru/tvp136}
\crossref{https://doi.org/10.4213/tvp136}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2331993}
\zmath{https://zbmath.org/?q=an:1116.60045}
\elib{http://elibrary.ru/item.asp?id=9157519}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 700--709
\crossref{https://doi.org/10.1137/S0040585X97982098}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000243284300014}


Linking options:
  • http://mi.mathnet.ru/eng/tvp136
  • https://doi.org/10.4213/tvp136
  • http://mi.mathnet.ru/eng/tvp/v50/i4/p797

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Debs P., Gradinaru M., “Penalization for birth and death processes”, Journal of Theoretical Probability, 21:3 (2008), 745–771  crossref  mathscinet  zmath  isi  scopus
    2. Ya. A. Lyulko, “On the distribution of time spent by Markov chain at different levels until achieving a fixed state”, Theory Probab. Appl., 56:1 (2012), 140–149  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. Ya. A. Lyulko, A. N. Shiryaev, “Sharp maximal inequalities for stochastic processes”, Proc. Steklov Inst. Math., 287:1 (2014), 155–173  mathnet  crossref  crossref  isi  elib  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:391
    Full text:61
    References:78

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019