|
Erdős measures for the goldenshift and Markov chains of the second order
Z. I. Bezhaevaa, V. I. Oseledetsb a Moscow State Institute of Electronics and Mathematics
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We consider the random variable $\zeta=\omega_1\beta^{-1}+\omega_2\beta^{-2}+\dotsb$, where $\omega_1,\omega_2,…$ is the stationary ergodic 2-step Markov chain with states 0, 1 and $\beta$ is the golden ratio. The paper finds all cases of absolute continuity of the distribution function of the random variable $\zeta$. For other cases the distribution function in continuous and singular. We prove that the respective Erdős measures arise under gluing together the states in a finite Markov chain. Ergodic properties of invariant Erdős measure are studied.
Keywords:
2-step Markov chain, golden ratio, Erdős measure, maximal entropy measure, $K$-automorphism, measure of Hausdorff dimensionality.
DOI:
https://doi.org/10.4213/tvp143
Full text:
PDF file (1951 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2007, 51:1, 28–41
Bibliographic databases:
Received: 12.10.2005
Citation:
Z. I. Bezhaeva, V. I. Oseledets, “Erdős measures for the goldenshift and Markov chains of the second order”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 5–21; Theory Probab. Appl., 51:1 (2007), 28–41
Citation in format AMSBIB
\Bibitem{BezOse06}
\by Z.~I.~Bezhaeva, V.~I.~Oseledets
\paper Erd\H os measures for the goldenshift and Markov chains of the second order
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 1
\pages 5--21
\mathnet{http://mi.mathnet.ru/tvp143}
\crossref{https://doi.org/10.4213/tvp143}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324163}
\zmath{https://zbmath.org/?q=an:1151.37009}
\elib{https://elibrary.ru/item.asp?id=9233586}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 1
\pages 28--41
\crossref{https://doi.org/10.1137/S0040585X97982165}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000245677000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247548646}
Linking options:
http://mi.mathnet.ru/eng/tvp143https://doi.org/10.4213/tvp143 http://mi.mathnet.ru/eng/tvp/v51/i1/p5
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 306 | Full text: | 81 | References: | 55 |
|