|
This article is cited in 5 scientific papers (total in 5 papers)
Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
M. Ya. Kelberta, Yu. M. Sukhovbc a University of Wales Swansea
b Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge
c A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Abstract:
This paper extends results of previous papers [S. Lalley and T. Sellke, Probab. Theory Related Fields, 108 (1997), pp. 171–192] and [F. I. Karpelevich, E. A. Pechersky, and Yu. M. Suhov, Comm. Math. Phys., 195 (1998), pp. 627–642] on the Hausdorff dimension of the limiting set of a homogeneous hyperbolic branching diffusion to the case of a variable fission mechanism. More precisely, we consider a nonhomogeneous branching diffusion on a Lobachevsky space $H^d$ and assume that parameters of the process uniformly approach their limiting values at the absolute $\partialH^d$. Under these assumptions, a formula is established for the Hausdorff dimension $h(\Lambda)$ of the limiting (random) set $\Lambda\subseteq\partialH^d$, which agrees with formulas obtained in the papers cited above for the homogeneous case. The method is based on properties of the minimal solution to a Sturm–Liouville equation, with a potential taking two values, and elements of the harmonic analysis on $H^d$.
Keywords:
Lobachevsky space, branching diffusion, limiting set, Hausdorff dimension, horospheric projection, equidistant projection, Sturm–Liouville equation, minimal positive solution.
DOI:
https://doi.org/10.4213/tvp155
Full text:
PDF file (1832 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2007, 51:1, 155–167
Bibliographic databases:
Received: 04.09.2005
Language:
Citation:
M. Ya. Kelbert, Yu. M. Sukhov, “Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 241–255; Theory Probab. Appl., 51:1 (2007), 155–167
Citation in format AMSBIB
\Bibitem{KelSuk06}
\by M.~Ya.~Kelbert, Yu.~M.~Sukhov
\paper Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 1
\pages 241--255
\mathnet{http://mi.mathnet.ru/tvp155}
\crossref{https://doi.org/10.4213/tvp155}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2324175}
\zmath{https://zbmath.org/?q=an:1112.60081}
\elib{https://elibrary.ru/item.asp?id=9233598}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 1
\pages 155--167
\crossref{https://doi.org/10.1137/S0040585X97982281}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000245677000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247507082}
Linking options:
http://mi.mathnet.ru/eng/tvp155https://doi.org/10.4213/tvp155 http://mi.mathnet.ru/eng/tvp/v51/i1/p241
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. Ya. Kelbert, Yu. M. Sukhov, “Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space”, Theory Probab. Appl., 52:4 (2008), 594–613
-
Cammarota V., Orsingher E., “Cascades of particles moving at finite velocity in hyperbolic spaces”, J. Stat. Phys., 133:6 (2008), 1137–1159
-
Theory Probab. Appl., 57:3 (2013), 419–443
-
Cammarota V. De Gregorio A. Macci C., “On the Asymptotic Behavior of the Hyperbolic Brownian Motion”, J. Stat. Phys., 154:6 (2014), 1550–1568
-
Orsingher E., Ricciuti C., Sisti F., “Motion Among Random Obstacles on a Hyperbolic Space”, J. Stat. Phys., 162:4 (2016), 869–886
|
Number of views: |
This page: | 235 | Full text: | 74 | References: | 60 |
|