|
This article is cited in 7 scientific papers (total in 7 papers)
Limit theorems for reduced branching processes in a random environment
V. A. Vatutin, E. E. D'yakonova Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
Let $Z(n)$, $n=0,1…$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s)…$ and let $S_0=0$, $S_k=X_1+…+X_k$, $k\ge 1$, be the associated random walk with $X_i=\log f_{i-1}'(1)$, and let $\tau(n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Denoting by $Z(k,n)$ the number of particles existing in the branching process at moment $k\le n$ and having nonempty offspring at time $n$ and assuming that the associated random walk satisfies the Spitzer–Doney condition $\mathbf{P}\{S_n>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $m=0,\pm 1,\pm 2,…$ the distribution of $Z(\tau(n)+m,n)$ given $Z(n)>0$ converges as $n\to\infty$ to a (random) discrete distribution which is proper with probability 1. On the other hand, if $m=m(n)\to\infty$ as $n\to\infty$, then to prove a conditional limit theorem for $Z(\tau(n)+m,n)$ given $Z(n)>0$, a scaling of $Z(\tau(n)+m,n)$ is needed by a function growing to infinity as $m\to\infty$.
Keywords:
branching processes in a random environment, Spitzer–Doney condition, conditional limit theorems, reduced process, most recent common ancestor.
DOI:
https://doi.org/10.4213/tvp173
Full text:
PDF file (2512 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2008, 52:2, 277–302
Bibliographic databases:
Received: 27.03.2006
Citation:
V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Teor. Veroyatnost. i Primenen., 52:2 (2007), 271–300; Theory Probab. Appl., 52:2 (2008), 277–302
Citation in format AMSBIB
\Bibitem{VatDya07}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Limit theorems for reduced branching processes in a random environment
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 2
\pages 271--300
\mathnet{http://mi.mathnet.ru/tvp173}
\crossref{https://doi.org/10.4213/tvp173}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2742502}
\zmath{https://zbmath.org/?q=an:1154.60079}
\elib{http://elibrary.ru/item.asp?id=9511773}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 2
\pages 277--302
\crossref{https://doi.org/10.1137/S0040585X97982979}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261612800005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849094113}
Linking options:
http://mi.mathnet.ru/eng/tvp173https://doi.org/10.4213/tvp173 http://mi.mathnet.ru/eng/tvp/v52/i2/p271
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695
-
V. A. Vatutin, E. E. Dyakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242
-
V. A. Vatutin, “The structure of decomposable reduced branching processes. I. Finitedimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662
-
V. A. Vatutin, “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119
-
Elena E. D'yakonova, “Reduced multitype critical branching processes in random environment”, Discrete Math. Appl., 28:1 (2018), 7–22
-
Smadi C. Vatutin V.A., “Reduced Two-Type Decomposable Critical Branching Processes With Possibly Infinite Variance”, Markov Process. Relat. Fields, 22:2 (2016), 311–358
-
M. Liu, V. A. Vatutin, “Reduced critical branching processes for small populations”, Theory Probab. Appl., 63:4 (2019), 648–656
|
Number of views: |
This page: | 310 | Full text: | 40 | References: | 44 |
|