RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2007, Volume 52, Issue 2, Pages 336–349 (Mi tvp175)  

This article is cited in 29 scientific papers (total in 29 papers)

Sharp optimality in density deconvolution with dominating bias. II

C. Butuceaa, A. Tsybakovb

a Université Paris X
b Université Pierre & Marie Curie, Paris VI

Abstract: We consider estimation of the common probability density $f$ of iid random variables $X_i$ that are observed with an additive iid noise. We assume that the unknown density $f$ belongs to a class $\mathcal{A}$ of densities whose characteristic function is described by the exponent $\exp(-\alpha |u|^r)$ as $|u|\to\infty$, where $\alpha>0$, $r>0$. The noise density is assumed known and such that its characteristic function decays as $\exp(-\beta|u|^s)$, as $|u|\to\infty$, where $\beta>0$, $s>0$. Assuming that $r<s$, we suggest a kernel-type estimator, whose variance turns out to be asymptotically negligible with respect to its squared bias under both pointwise and $\mathbb{L}_2$ risks. For $r<s/2$ we construct a sharp adaptive estimator of $f$.

Keywords: deconvolution, nonparametric density estimation, infinitely differentiable functions, exact constants in nonparametric smoothing, minimax risk, adaptive curve estimation.

DOI: https://doi.org/10.4213/tvp175

Full text: PDF file (1155 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2008, 52:2, 237–249

Bibliographic databases:

Received: 30.08.2004
Revised: 27.06.2005
Language:

Citation: C. Butucea, A. Tsybakov, “Sharp optimality in density deconvolution with dominating bias. II”, Teor. Veroyatnost. i Primenen., 52:2 (2007), 336–349; Theory Probab. Appl., 52:2 (2008), 237–249

Citation in format AMSBIB
\Bibitem{ButTsy07}
\by C.~Butucea, A.~Tsybakov
\paper Sharp optimality in density deconvolution with dominating bias.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 2
\pages 336--349
\mathnet{http://mi.mathnet.ru/tvp175}
\crossref{https://doi.org/10.4213/tvp175}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2742504}
\zmath{https://zbmath.org/?q=an:1142.62017}
\elib{http://elibrary.ru/item.asp?id=9511775}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 2
\pages 237--249
\crossref{https://doi.org/10.1137/S0040585X97982992}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261612800003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849090751}


Linking options:
  • http://mi.mathnet.ru/eng/tvp175
  • https://doi.org/10.4213/tvp175
  • http://mi.mathnet.ru/eng/tvp/v52/i2/p336

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Comte F., Rozenholc Y., Taupin M.-L., “Penalized contrast estimator for adaptive density deconvolution”, Canad. J. Statist., 34:3 (2006), 431–452  crossref  mathscinet  zmath  isi  scopus
    2. Meister A., “Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions”, Inverse Problems, 24:1 (2008), 015003, 14 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. van Es B., Gugushvili Sh., Spreij P., “Deconvolution for an atomic distribution”, Electron. J. Stat., 2 (2008), 265–297  crossref  mathscinet  zmath  isi  scopus
    4. Comte F., Dedecker J., Taupin M.L., “Adaptive density estimation for general ARCH models”, Econometric Theory, 24:6 (2008), 1628–1662  crossref  mathscinet  zmath  isi  scopus
    5. Gugushvili Sh., “Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process”, J. Nonparametr. Stat., 21:3 (2009), 321–343  crossref  mathscinet  zmath  isi  scopus
    6. Aubry J.-M., Butucea C., Meziani K., “State estimation in quantum homodyne tomography with noisy data”, Inverse Problems, 25:1 (2009), 015003, 22 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. Belomestny D., “Spectral estimation of the fractional order of a Lévy process”, Ann. Statist., 38:1 (2010), 317–351  crossref  mathscinet  zmath  isi  elib  scopus
    8. Munk A., Schmidt-Hieber J., “Nonparametric estimation of the volatility function in a high-frequency model corrupted by noise”, Electron. J. Stat., 4 (2010), 781–821  crossref  mathscinet  zmath  isi  scopus
    9. Chen S.X., Delaigle A., Hall P., “Nonparametric estimation for a class of Levy processes”, J. Econometrics, 157:2 (2010), 257–271  crossref  mathscinet  zmath  isi  scopus
    10. Taupin M.-L., “Comment on identification and estimation of nonlinear models using two samples with nonclassical measurement errors”, J. Nonparametr. Stat., 22:4 (2010), 409–414  crossref  mathscinet  zmath  isi  scopus
    11. Luo Z.M., Kim P.T., Kim T.Y., Koo J.Y., “Deconvolution on the Euclidean motion group $\mathbb{SE}(3)$”, Inverse Problems, 27:3 (2011), 035014, 30 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. Comte F. Johannes J., “Adaptive Functional Linear Regression”, Ann. Stat., 40:6 (2012), 2765–2797  crossref  mathscinet  zmath  isi  scopus
    13. Dedecker J., Michel B., “Minimax Rates of Convergence for Wasserstein Deconvolution with Supersmooth Errors in Any Dimension”, J. Multivar. Anal., 122 (2013), 278–291  crossref  mathscinet  zmath  isi  scopus
    14. Comte F., Lacour C., “Anisotropic Adaptive Kernel Deconvolution”, Ann. Inst. Henri Poincare-Probab. Stat., 49:2 (2013), 569–609  crossref  mathscinet  zmath  adsnasa  isi  scopus
    15. Ray K., “Bayesian Inverse Problems with Non-Conjugate Priors”, Electron. J. Stat., 7 (2013), 2516–2549  crossref  mathscinet  zmath  isi  scopus
    16. Johannes J., Schwarz M., “Adaptive Circular Deconvolution by Model Selection Under Unknown Error Distribution”, Bernoulli, 19:5A (2013), 1576–1611  crossref  mathscinet  zmath  isi  scopus
    17. Kappus J., Mabon G., “Adaptive Density Estimation in Deconvolution Problems With Unknown Error Distribution”, Electron. J. Stat., 8 (2014), 2879–2904  crossref  mathscinet  zmath  isi  scopus
    18. Dion Ch., “New Adaptive Strategies For Nonparametric Estimation in Linear Mixed Models”, J. Stat. Plan. Infer., 150 (2014), 30–48  crossref  mathscinet  zmath  isi  scopus
    19. Comte F., Samson A., Stirnemann J.J., “Deconvolution Estimation of Onset of Pregnancy With Replicate Observations”, Scand. J. Stat., 41:2 (2014), 325–345  crossref  mathscinet  zmath  isi  scopus
    20. Loubes J.M., Marteau C., “Goodness-of-Fit Testing Strategies From Indirect Observations”, J. Nonparametr. Stat., 26:1 (2014), 85–99  crossref  mathscinet  zmath  isi  elib  scopus
    21. Scricciolo C., “Adaptive Bayesian Density Estimation in l-P-Metrics With Pitman-Yor Or Normalized Inverse-Gaussian Process Kernel Mixtures”, Bayesian Anal., 9:2 (2014), 475–520  crossref  mathscinet  zmath  isi  elib  scopus
    22. Comte F., Duval C., Genon-Catalot V., Kappus J., “Estimation of the Jump Size Density in a Mixed Compound Poisson Process”, Scand. J. Stat., 42:4 (2015), 1023–1044  crossref  mathscinet  zmath  isi  scopus
    23. Chesneau C., Comte F., Mabon G., Navarro F., “Estimation of Convolution in the Model With Noise”, J. Nonparametr. Stat., 27:3 (2015), 286–315  crossref  mathscinet  zmath  isi  scopus
    24. Dedecker J., Fischer A., Michel B., “Improved Rates For Wasserstein Deconvolution With Ordinary Smooth Error in Dimension One”, Electron. J. Stat., 9:1 (2015), 234–265  crossref  mathscinet  zmath  isi  scopus
    25. Dion Ch., “Nonparametric estimation in a mixed-effect Ornstein?Uhlenbeck model”, Metrika, 79:8 (2016), 919–951  crossref  mathscinet  zmath  isi  scopus
    26. Mabon G., “Adaptive deconvolution of linear functionals on the nonnegative real line”, J. Stat. Plan. Infer., 178 (2016), 1–23  crossref  mathscinet  zmath  isi  scopus
    27. Lepski O.V., Willer T., “Lower bounds in the convolution structure density model”, Bernoulli, 23:2 (2017), 884–926  crossref  mathscinet  zmath  isi  scopus
    28. Duval C., Kappus J., “Nonparametric adaptive estimation for grouped data”, J. Stat. Plan. Infer., 182 (2017), 12–28  crossref  mathscinet  zmath  isi  scopus
    29. G. A. Bakai, A. V. Shklyaev, “Bolshie ukloneniya obobschennogo protsessa vosstanovleniya”, Diskret. matem., 31:1 (2019), 21–55  mathnet  crossref  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:345
    Full text:50
    References:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019