Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2007, Volume 52, Issue 2, Pages 363–366 (Mi tvp179)  

Short Communications

xtremes of shot-noise fields in the presence of regularly varying tails with index $\alpha\in(0,1)$

A. V. Lebedev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper considers shot-noise fields with regularly varying tail amplitudes with index $\alpha\in(0,1)$. The asymptotic behavior of the supreme of the field over bounded measurable regions growing in the van Hove sense is investigated. The nondegenerate limit law, which was obtained earlier by the author, will be deduced under other assumptions.

Keywords: shot-noise field, extreme, regularly varying tail, nondegenerate limit law, linear normalization.

DOI: https://doi.org/10.4213/tvp179

Full text: PDF file (454 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2008, 52:2, 350–353

Bibliographic databases:

Received: 20.01.2005

Citation: A. V. Lebedev, “xtremes of shot-noise fields in the presence of regularly varying tails with index $\alpha\in(0,1)$”, Teor. Veroyatnost. i Primenen., 52:2 (2007), 363–366; Theory Probab. Appl., 52:2 (2008), 350–353

Citation in format AMSBIB
\Bibitem{Leb07}
\by A.~V.~Lebedev
\paper xtremes of shot-noise fields in the presence of regularly varying tails with index $\alpha\in(0,1)$
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 2
\pages 363--366
\mathnet{http://mi.mathnet.ru/tvp179}
\crossref{https://doi.org/10.4213/tvp179}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2742508}
\zmath{https://zbmath.org/?q=an:1145.60029}
\elib{https://elibrary.ru/item.asp?id=9511779}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 2
\pages 350--353
\crossref{https://doi.org/10.1137/S0040585X97983031}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000261612800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849132219}


Linking options:
  • http://mi.mathnet.ru/eng/tvp179
  • https://doi.org/10.4213/tvp179
  • http://mi.mathnet.ru/eng/tvp/v52/i2/p363

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:213
    Full text:109
    References:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022