RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2006, Volume 51, Issue 4, Pages 674–690 (Mi tvp19)  

An exponential estimate for a wavelet density estimator

J. Gama, V. V. Yurinskii

University of Beira Interior

Abstract: This article is dedicated to deriving an exponential inequality for the distribution of the $L^p$-norm of the discrepancy between a one-dimensional probability density and its wavelet estimator that uses thresholding. In the underlying multiresolution analysis, the scale function and the mother wavelet are supposed to have compact support. The exponential estimate obtained is akin to Bernstein's inequality for sums of independent random variables. It supplements the known bounds for the mean integrated risks. The proof exploits the near-independence of empirical approximations to the coefficients of the same multiresolution level that correspond to wavelets with well-separated supports.

DOI: https://doi.org/10.4213/tvp19

Full text: PDF file (1528 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2007, 51:4, 595–608

Bibliographic databases:

Received: 05.09.2005

Citation: J. Gama, V. V. Yurinskii, “An exponential estimate for a wavelet density estimator”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 674–690; Theory Probab. Appl., 51:4 (2007), 595–608

Citation in format AMSBIB
\Bibitem{GamYur06}
\by J.~Gama, V.~V.~Yurinskii
\paper An exponential estimate for a~wavelet density estimator
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 674--690
\mathnet{http://mi.mathnet.ru/tvp19}
\crossref{https://doi.org/10.4213/tvp19}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2338061}
\zmath{https://zbmath.org/?q=an:1127.62031}
\elib{http://elibrary.ru/item.asp?id=9310056}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 595--608
\crossref{https://doi.org/10.1137/S0040585X97982657}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000251875600002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149118996}


Linking options:
  • http://mi.mathnet.ru/eng/tvp19
  • https://doi.org/10.4213/tvp19
  • http://mi.mathnet.ru/eng/tvp/v51/i4/p674

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:268
    Full text:37
    References:41
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019