|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On the asymptotic behaviour of the prediction error in the singular case
N. Ì. Âàbàyàn Leningrad
Abstract:
Let $\{X_j\}$ be a singular stationary in a wide sense stochastic process with the spectral
density function $f(\lambda)$. Denote by $\sigma_n^2$ the mean square prediction error for the prediction
of $X_0$ by linear forms depending on $X_{-1}, X_{-2},…X_{-n}$. The rate of convergence $\delta_n=\sigma_n^2-\sigma_\infty^2\downarrow 0$, $n\uparrow\infty$, is investigated.
Full text:
PDF file (285 kB)
English version:
Theory of Probability and its Applications, 1985, 29:1, 147–150
Bibliographic databases:
Received: 10.04.1981
Citation:
N. Ì. Âàbàyàn, “On the asymptotic behaviour of the prediction error in the singular case”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 147–150; Theory Probab. Appl., 29:1 (1985), 147–150
Citation in format AMSBIB
\Bibitem{Âàb84}
\by N.~Ì.~Âàbàyàn
\paper On the asymptotic behaviour of the prediction error in the singular case
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 147--150
\mathnet{http://mi.mathnet.ru/tvp1981}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=739513}
\zmath{https://zbmath.org/?q=an:0554.60048|0531.60046}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 147--150
\crossref{https://doi.org/10.1137/1129018}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1985AFG0600018}
Linking options:
http://mi.mathnet.ru/eng/tvp1981 http://mi.mathnet.ru/eng/tvp/v29/i1/p147
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. L. Bunich, “Degenerate linear-quadratic problem of discrete plant control under uncertainty”, Autom. Remote Control, 72:11 (2011), 2351–2363
-
A. L. Bunich, “Control cost for a discrete linear object under uncertainty about the spectral composition of perturbances”, Autom. Remote Control, 73:12 (2012), 2038–2048
|
Number of views: |
This page: | 153 | Full text: | 72 |
|