RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1983, Volume 28, Issue 1, Pages 32–44 (Mi tvp2153)  

Local additive functionals of Gaussian random fields

R. L. Dobrušin, M. Ya. Kel'bert

Moscow

Abstract: Local additive functional $\Xi$ is a random finite-additive measure whose value on the parallelepiped $V\subset R^\nu$ belongs to the $\sigma$-algebra $\mathfrak B_V$ generated by the values of generalized Gaussian random field $\zeta=\{\zeta(\varphi),\varphi\in\mathfrak Y(R^\nu)\}$ on $V$. This functional are described in terms of their representation as multiple stochastic Wiener–Ito integrals.

Full text: PDF file (907 kB)

English version:
Theory of Probability and its Applications, 1984, 28:1, 35–42

Bibliographic databases:

Received: 18.03.1981

Citation: R. L. Dobrušin, M. Ya. Kel'bert, “Local additive functionals of Gaussian random fields”, Teor. Veroyatnost. i Primenen., 28:1 (1983), 32–44; Theory Probab. Appl., 28:1 (1984), 35–42

Citation in format AMSBIB
\Bibitem{DobKel83}
\by R.~L.~Dobru{\v s}in, M.~Ya.~Kel'bert
\paper Local additive functionals of Gaussian random fields
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 1
\pages 32--44
\mathnet{http://mi.mathnet.ru/tvp2153}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=691466}
\zmath{https://zbmath.org/?q=an:0521.60059}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 1
\pages 35--42
\crossref{https://doi.org/10.1137/1128002}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984SL53600002}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2153
  • http://mi.mathnet.ru/eng/tvp/v28/i1/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:126
    Full text:72

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020