RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2004, Volume 49, Issue 1, Pages 70–108 (Mi tvp237)  

This article is cited in 22 scientific papers (total in 22 papers)

On weak solutions of backward stochastic differential equations

R. Buckdahna, H. J. Engelbertb, A. Rascanuc

a Université de Bretagne Occidentale
b Friedrich-Schiller-University
c Faculty of Mathematics, Alexandru Ioan Cuza University of Iaşi

Abstract: The main objective of this paper consists in discussing the concept of weak solutions of a certain type of backward stochastic differential equations. Using weak convergence in the Meyer–Zheng topology, we shall give a general existence result. The terminal condition $H$ depends in functional form on a driving càdlàg process $X$, and the coefficient $f$ depends on time $t$ and in functional form on $X$ and the solution process $Y$. The functional $f(t,x,y),(t,x,y)\in [0,T]\times D([0,T];{R}^{d+m})$ is assumed to be bounded and continuous in $(x,y)$ on the Skorokhod space $D([0,T] ;{R}^{d+m})$ in the Meyer–Zheng topology. By several examples of Tsirelson type, we will show that there are, indeed, weak solutions which are not strong, i.e., are not solutions in the usual sense. We will also discuss pathwise uniqueness and uniqueness in law of the solution and conclude, similar to the Yamada–Watanabe theorem, that pathwise uniqueness and weak existence ensure the existence of a (uniquely determined) strong solution. Applying these concepts, we are able to state the existence of a (unique) strong solution if, additionally to the assumptions described above, $f$ satisfies a certain generalized Lipschitz-type condition.

Keywords: backward stochastic differential equation, weak solution, strong solution, Tsirelson's example, pathwise uniqueness, uniqueness in law, Meyer–Zheng topology, weak convergence.

DOI: https://doi.org/10.4213/tvp237

Full text: PDF file (3613 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2005, 49:1, 16–50

Bibliographic databases:

Received: 24.11.2002
Language:

Citation: R. Buckdahn, H. J. Engelbert, A. Rascanu, “On weak solutions of backward stochastic differential equations”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 70–108; Theory Probab. Appl., 49:1 (2005), 16–50

Citation in format AMSBIB
\Bibitem{BucEngRas04}
\by R.~Buckdahn, H.~J.~Engelbert, A.~Rascanu
\paper On weak solutions of backward stochastic differential
equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 1
\pages 70--108
\mathnet{http://mi.mathnet.ru/tvp237}
\crossref{https://doi.org/10.4213/tvp237}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141331}
\zmath{https://zbmath.org/?q=an:1095.60019}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 1
\pages 16--50
\crossref{https://doi.org/10.1137/S0040585X97980877}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228185300002}


Linking options:
  • http://mi.mathnet.ru/eng/tvp237
  • https://doi.org/10.4213/tvp237
  • http://mi.mathnet.ru/eng/tvp/v49/i1/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Theory Probab. Appl., 50:2 (2006), 284–289  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Theory Probab. Appl., 52:1 (2008), 152–160  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Kurtz T.G., “The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities”, Electron. J. Probab., 12 (2007), 951–965  crossref  mathscinet  zmath  isi
    4. Kisielewicz M., “Backward stochastic differential inclusions”, Dynam. Systems Appl., 16:1 (2007), 121–139  mathscinet  zmath  isi
    5. Ma Jin, Zhang Jianfeng, Zheng Ziyu, “Weak solutions for forward-backward SDEs—a martingale problem approach”, Ann. Probab., 36:6 (2008), 2092–2125  crossref  mathscinet  zmath  isi  scopus
    6. Kisielewicz M., “Weak compactness of weak solutions to backward stochastic differential inclusions”, Dynam. Systems Appl., 17:2 (2008), 351–370  mathscinet  zmath  isi
    7. Sergey Ya. Makhno, Irina A. Yerisova, “Limit theorems for backward stochastic equations”, Theory Stoch. Process., 14(30):2 (2008), 93–107  mathnet
    8. Erisova I.A., “Convergence of solutions of backward stochastic equations”, Ukrain. Math. J., 61:7 (2009), 1093–1112  crossref  mathscinet  zmath  isi  scopus
    9. Yannacopoulos A.N., Frangos N.E., Karatzas I., “Wiener Chaos Solutions for Linear Backward Stochastic Evolution Equations”, SIAM J Math Anal, 43:1 (2011), 68–113  crossref  mathscinet  zmath  isi  scopus
    10. Ma J., Zhang J., “On weak solutions of forward-backward SDEs”, Probab Theory Related Fields, 151:3–4 (2011), 475–507  crossref  mathscinet  zmath  isi  scopus
    11. Liang G., Lyons T., Qian Zh., “Backward Stochastic Dynamics on a Filtered Probability Space”, Ann Probab, 39:4 (2011), 1422–1448  crossref  mathscinet  zmath  isi  scopus
    12. Tao R., Wu Zh., Zhang Q., “Bsdes with Regime Switching: Weak Convergence and Applications”, J. Math. Anal. Appl., 407:1 (2013), 97–111  crossref  mathscinet  zmath  isi  scopus
    13. Bouchemella N. de Fitte P.R., “Weak Solutions of Backward Stochastic Differential Equations with Continuous Generator”, Stoch. Process. Their Appl., 124:1 (2014), 927–960  crossref  mathscinet  zmath  isi  scopus
    14. Cruzeiro A.B., Gomes Andre de Oliveira, Zhang L., “Asymptotic Properties of Coupled Forward-Backward Stochastic Differential Equations”, Stoch. Dyn., 14:3 (2014), 1450004  crossref  mathscinet  zmath  isi  scopus
    15. Kurtz T.G., “Weak and Strong Solutions of General Stochastic Models”, Electron. Commun. Probab., 19 (2014), 1–16  crossref  mathscinet  isi  scopus
    16. Kisielewicz M., “Existence of Strong Viable Solutions of Backward Stochastic Differential Inclusions”, Fixed Point Theory, 15:1 (2014), 99–116  mathscinet  zmath  isi
    17. Gassous A.M., Rascanu A., Rotenstein E., “Multivalued Backward Stochastic Differential Equations With Oblique Subgradients”, Stoch. Process. Their Appl., 125:8 (2015), 3170–3195  crossref  mathscinet  zmath  isi  scopus
    18. Bahlali K., Essaky E., Hassani M., “Existence and Uniqueness of Multidimensional Bsdes and of Systems of Degenerate PDEs With Superlinear Growth Generator”, SIAM J. Math. Anal., 47:6 (2015), 4251–4288  crossref  mathscinet  zmath  isi  scopus
    19. Bahlali Kh., Kebiri O., Khelfallah N., Moussaoui H., “One Dimensional Bsdes With Logarithmic Growth Application to PDEs”, Stochastics, 89:6-7 (2017), 1061–1081  crossref  mathscinet  isi  scopus
    20. Chen J., Ma J., Yin H., “Forward-Backward SDEs With Discontinuous Coefficients”, Stoch. Anal. Appl., 36:2 (2018), 274–294  crossref  mathscinet  zmath  isi  scopus
    21. Carmona R. Delarue F., “Probabilistic Theory of Mean Field Games With Applications i: Mean Field Fbsdes, Control, and Games”, Probabilistic Theory of Mean Field Games With Applications i: Mean Field Fbsdes, Control, and Games, Probability Theory and Stochastic Modelling, 83, Springer International Publishing Ag, 2018, 1–713  crossref  mathscinet  zmath  isi
    22. Carmona R. Delarue F., “Probabilistic Theory of Mean Field Games With Applications II: Mean Field Games With Common Noise and Master Equations”, Probabilistic Theory of Mean Field Games With Applications II: Mean Field Games With Common Noise and Master Equations, Probability Theory and Stochastic Modelling, 84, Springer International Publishing Ag, 2018, 1–697  crossref  mathscinet  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:392
    Full text:70
    References:88

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019