RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1982, Volume 27, Issue 3, Pages 587–592 (Mi tvp2394)  

Short Communications

On the asymptotical effectiveness of testing a simple hypothesis against a composite alternative

Yu. I. Ingster

Leningrad

Abstract: Let $X_\varepsilon$ be an observations with a distribution $P_\theta^\varepsilon$, $\theta\in\Theta$, where the parametric space $\Theta$ is an open subset if the real line, $\varepsilon$ is a real parameter, $\varepsilon\to\varepsilon_0$ (for example, $\varepsilon$ is the number of discrete observations in the sample $X_\varepsilon$ or the length of a continuous process realisation $X_\varepsilon$: $\varepsilon_0=\infty$). On the basis of Вayes' approach we consider the problem of testing the hypothesis $H_0$: $\theta=\xi$ against the hypothesis $H_1$: $\theta$ is a random variable having a priori distribution with the density $\pi(\theta)$. If the probability of the error of the second kind is fixed, then the optimal test (which minimizes the probability of an error of the first kind) is based on the likelihood ratio
$$ \frac{dP_{H_1}^\varepsilon}{dP_{H_0}^\varepsilon}= \int_\Theta\frac{dP_\theta^\varepsilon}{dP_\xi^\varepsilon}\pi(\theta) d\theta $$
It is shown that the methods elaborated in [1]–[3] enable us to prove the asymptotic optimality of likelihood ratio test and to receive the asymptotically exact estimates for the probability of error of the first kind for the optimal test. We extend also some results of [5] on a class of models considered in [1]–[4].

Full text: PDF file (428 kB)

English version:
Theory of Probability and its Applications, 1983, 27:3, 628–633

Bibliographic databases:

Received: 05.12.1978

Citation: Yu. I. Ingster, “On the asymptotical effectiveness of testing a simple hypothesis against a composite alternative”, Teor. Veroyatnost. i Primenen., 27:3 (1982), 587–592; Theory Probab. Appl., 27:3 (1983), 628–633

Citation in format AMSBIB
\Bibitem{Ing82}
\by Yu.~I.~Ingster
\paper On the asymptotical effectiveness of testing a~simple hypothesis against a~composite alternative
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 3
\pages 587--592
\mathnet{http://mi.mathnet.ru/tvp2394}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=673934}
\zmath{https://zbmath.org/?q=an:0514.62035|0495.62030}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 3
\pages 628--633
\crossref{https://doi.org/10.1137/1127073}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983RJ51700020}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2394
  • http://mi.mathnet.ru/eng/tvp/v27/i3/p587

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:153
    Full text:60

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020