RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2004, Volume 49, Issue 1, Pages 145–155 (Mi tvp240)  

This article is cited in 4 scientific papers (total in 4 papers)

Short Communications

On Markovian perturbations of the group of unitary operators associated with a stochastic process with stationary increments

G. G. Amosov

Moscow Institute of Physics and Technology

Abstract: We introduce “Markovian” cocycle perturbations of the group of unitary operators associated with a stochastic process with stationary increments, which are characterized by a localization of the perturbation to the algebra of past events. The definition we give is necessary because the Markovian perturbation of the group associated with a stochastic process with noncorrelated increments results in the perturbed group for which there exists a stochastic process with noncorrelated increments associated with it. On the other hand, some “deterministic” stochastic process lying in the past can also be associated with the perturbed group. The model of Markovian perturbations describing all Markovian cocycles up to a unitary equivalence of the perturbations has been constructed. Using this model, we construct Markovian cocycles transforming Gaussian measures to the equivalent Gaussian measures.

Keywords: stochastic process with stationary increments, group of unitary operators, cocycle perturbation.

DOI: https://doi.org/10.4213/tvp240

Full text: PDF file (1520 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2005, 49:1, 123–132

Bibliographic databases:

Received: 23.05.2002

Citation: G. G. Amosov, “On Markovian perturbations of the group of unitary operators associated with a stochastic process with stationary increments”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 145–155; Theory Probab. Appl., 49:1 (2005), 123–132

Citation in format AMSBIB
\Bibitem{Amo04}
\by G.~G.~Amosov
\paper On Markovian perturbations of the group of
unitary operators associated with a stochastic process
with stationary increments
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 1
\pages 145--155
\mathnet{http://mi.mathnet.ru/tvp240}
\crossref{https://doi.org/10.4213/tvp240}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141334}
\zmath{https://zbmath.org/?q=an:1096.47065}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 1
\pages 123--132
\crossref{https://doi.org/10.1137/S0040585X97980907}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228185300008}


Linking options:
  • http://mi.mathnet.ru/eng/tvp240
  • https://doi.org/10.4213/tvp240
  • http://mi.mathnet.ru/eng/tvp/v49/i1/p145

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Amosov, “On Markov perturbations of quantum random problems with stationary increments”, Theory Probab. Appl., 50:4 (2006), 650–658  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. G. G. Amosov, A. D. Baranov, “Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line”, Math. Notes, 79:1 (2006), 3–17  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. G. G. Amosov, “Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space”, Theoret. and Math. Phys., 146:1 (2006), 152–157  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. G. G. Amosov, A. D. Baranov, V. V. Kapustin, “O primenenii modelnykh prostranstv dlya postroeniya kotsiklicheskikh vozmuschenii polugruppy sdvigov na polupryamoi”, Ufimsk. matem. zhurn., 4:1 (2012), 17–28  mathnet  mathscinet  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:264
    Full text:44
    References:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019