Teoriya Veroyatnostei i ee Primeneniya
General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Teor. Veroyatnost. i Primenen.:

Personal entry:
Save password
Forgotten password?

Teor. Veroyatnost. i Primenen., 2008, Volume 53, Issue 3, Pages 557–575 (Mi tvp2449)  

This article is cited in 10 scientific papers (total in 10 papers)

On Asymptotic Optimality of the Second Order in the Minimax Quickest Detection Problem of Drift Change for Brownian Motion

E. V. Burnaeva, E. A. Feinbergb, A. N. Shiryaeva

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper deals with the minimax quickest detection problem of a drift change for the Brownian motion. The following minimax risks are studied: $C(T)=\inf_{\tau\in{\mathfrak{M}}_{T}}\sup_\thetaE_\theta(\tau-\theta | \tau\ge\theta)$ and $\overline{C}(T)=\inf_{\overline{\tau}\in\overline{\mathfrak{M}}_T}\sup_\thetaE_\theta(\overline{\tau}-\theta | \overline{\tau}\ge\theta)$, where ${\mathfrak{M}}_T$ is the set of stopping times $\tau$ such that $E_\infty\tau=T$ and ${\overline{\mathfrak{M}}}_T$ is the set of randomized stopping times ${\overline{\tau}}$ such that $E_\infty{\overline{\tau}}=T$. The goal of this paper is to obtain for these risks estimates from above and from below. Using these estimates we prove the existence of stopping times, which are asymptotically optimal of the first and second orders as $T\to\infty$ (for $C(T)$ and $\overline{C}(T)$, respectively).

Keywords: disorder problem, Brownian motion, minimax risk, asymptotical optimality of the first and second orders.

DOI: https://doi.org/10.4213/tvp2449

Full text: PDF file (1559 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2009, 53:3, 519–536

Bibliographic databases:

Received: 08.11.2007

Citation: E. V. Burnaev, E. A. Feinberg, A. N. Shiryaev, “On Asymptotic Optimality of the Second Order in the Minimax Quickest Detection Problem of Drift Change for Brownian Motion”, Teor. Veroyatnost. i Primenen., 53:3 (2008), 557–575; Theory Probab. Appl., 53:3 (2009), 519–536

Citation in format AMSBIB
\by E.~V.~Burnaev, E.~A.~Feinberg, A.~N.~Shiryaev
\paper On Asymptotic Optimality of the Second Order in the Minimax Quickest Detection Problem of Drift Change for Brownian Motion
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 3
\pages 557--575
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 3
\pages 519--536

Linking options:
  • http://mi.mathnet.ru/eng/tvp2449
  • https://doi.org/10.4213/tvp2449
  • http://mi.mathnet.ru/eng/tvp/v53/i3/p557

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Li K., Polunchenko A.S., Pepelyshev A., “Analytic Evaluation of the Fractional Moments For the Quasi-Stationary Distribution of the Shiryaev Martingale on An Interval”, Commun. Stat.-Simul. Comput.  crossref  isi
    2. Polunchenko A.S., Sokolov G., “An Analytic Expression for the Distribution of the Generalized Shiryaev–Roberts Diffusion”, Methodol. Comput. Appl. Probab., 18:4, SI (2016), 1153–1195  crossref  mathscinet  zmath  isi  elib  scopus
    3. Polunchenko A.S., “Exact distribution of the Generalized Shiryaev–Roberts stopping time under the minimax Brownian motion setup”, Seq. Anal., 35:1, SI (2016), 108–143  crossref  mathscinet  zmath  isi  elib  scopus
    4. Polunchenko A.S., “On the quasi-stationary distribution of the Shiryaev–Roberts diffusion”, Seq. Anal., 36:1 (2017), 126–149  crossref  mathscinet  zmath  isi  scopus
    5. Theory Probab. Appl., 62:4 (2018), 617–631  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Polunchenko A.S., “Asymptotic Exponentiality of the First Exit Time of the Shiryaev-Roberts Diffusion With Constant Positive Drift”, Seq. Anal., 36:3 (2017), 370–383  crossref  mathscinet  zmath  isi  scopus
    7. Theory Probab. Appl., 63:3 (2019), 464–478  mathnet  crossref  crossref  isi  elib
    8. Polunchenko A.S., Pepelyshev A., “Analytic Moment and Laplace Transform Formulae For the Quasi-Stationary Distribution of the Shiryaev Diffusion on An Interval”, Stat. Pap., 59:4, SI (2018), 1351–1377  crossref  mathscinet  zmath  isi  scopus
    9. Li K., Polunchenko A.S., “On the Convergence Rate of the Quasi- to Stationary Distribution For the Shiryaev-Roberts Diffusion”, Seq. Anal., 39:2 (2020), 214–229  crossref  mathscinet  isi
    10. Romanenkova E., Zaytsev A., Klyuchnikov N., Gruzdev A., Antipova K., Ismailova L., Burnaev E., Semenikhin A., Koryabkin V., Simon I., Koroteev D., “Real-Time Data-Driven Detection of the Rock-Type Alteration During a Directional Drilling”, IEEE Geosci. Remote Sens. Lett., 17:11 (2020), 1861–1865  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:472
    Full text:141

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021