Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2008, Volume 53, Issue 3, Pages 610–622 (Mi tvp2456)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model

O. Hadjiliadisa, V. H. Poorb

a Columbia University
b Princeton University

Abstract: This work examines the problem of sequential detection of a change in the drift of a Brownian motion in the case of two-sided alternatives. Traditionally, 2-CUSUM stopping rules have been used for this problem due to their asymptotically optimal character as the mean time between false alarms tends to $\infty$. In particular, attention has focused on 2-CUSUM harmonic mean rules due to the simplicity of calculating their first moments. In this paper, expressions for the first moment of a general 2-CUSUM stopping rule and its rate of change are derived. These expressions are used to obtain explicit upper and lower bounds for it and its rate of change as one of the threshold parameters changes. Using these expressions we prove not only the existence but also the uniqueness of the best classical 2-CUSUM stopping rule with respect to the extended Lorden criterion suggested in [O. Hadjiliadis and G. V. Moustakides, Theory Probab. Appl., 50 (2006), pp. 75–85]. In particular, in both the symmetric and the nonsymmetric case we identify the class of the best 2-CUSUM stopping rule

Keywords: change detection, quickest detection, CUSUM, two-sided CUSUM.

DOI: https://doi.org/10.4213/tvp2456

Full text: PDF file (1422 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2009, 53:3, 537–547

Bibliographic databases:

Received: 23.05.2007
Language:

Citation: O. Hadjiliadis, V. H. Poor, “On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model”, Teor. Veroyatnost. i Primenen., 53:3 (2008), 610–622; Theory Probab. Appl., 53:3 (2009), 537–547

Citation in format AMSBIB
\Bibitem{HadPoo08}
\by O.~Hadjiliadis, V.~H.~Poor
\paper On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 3
\pages 610--622
\mathnet{http://mi.mathnet.ru/tvp2456}
\crossref{https://doi.org/10.4213/tvp2456}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2759713}
\zmath{https://zbmath.org/?q=an:05701632}
\elib{https://elibrary.ru/item.asp?id=12894557}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 3
\pages 537--547
\crossref{https://doi.org/10.1137/S0040585X97983808}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000270196500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-61449165104}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2456
  • https://doi.org/10.4213/tvp2456
  • http://mi.mathnet.ru/eng/tvp/v53/i3/p610

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. S. Darhovsky, “Change-point detection in random sequence under minimal prior information”, Theory Probab. Appl., 58:3 (2014), 488–493  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. Komaee A., “Quickest Detection of a Random Pulse in White Gaussian Noise”, IEEE Trans. Autom. Control, 59:6 (2014), 1468–1479  crossref  mathscinet  zmath  isi  elib  scopus
    3. Moustakides G.V., “Multiple Optimality Properties of the Shewhart Test”, Seq. Anal., 33:3 (2014), 318–344  crossref  mathscinet  zmath  isi  scopus
    4. Zhang H., Hadjiliadis O., Schaefer T., Poor H.V., “Quickest Detection in Coupled Systems”, SIAM J. Control Optim., 52:3 (2014), 1567–1596  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:223
    Full text:1748
    References:51

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021