General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Teor. Veroyatnost. i Primenen.:

Personal entry:
Save password
Forgotten password?

Teor. Veroyatnost. i Primenen., 2008, Volume 53, Issue 4, Pages 684–703 (Mi tvp2460)  

This article is cited in 20 scientific papers (total in 20 papers)

Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics

V. N. Kolokoltsov

Nottingham Trent University

Abstract: Functional limit theorems for continuous-time random walks (CTRW) are found in the general case of dependent waiting times and jump sizes that are also position dependent. The limiting anomalous diffusion is described in terms of fractional dynamics. Probabilistic interpretation of generalized fractional evolution is given in terms of the random time change (subordination) by means of hitting times processes.

Keywords: fractional stable distributions, anomalous diffusion, fractional derivatives, limit theorems, continuous-time random walks, time change, Lйvy subordinators, hitting time processes.


Full text: PDF file (2223 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2009, 53:4, 594–609

Bibliographic databases:

Received: 30.11.2007

Citation: V. N. Kolokoltsov, “Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics”, Teor. Veroyatnost. i Primenen., 53:4 (2008), 684–703; Theory Probab. Appl., 53:4 (2009), 594–609

Citation in format AMSBIB
\by V.~N.~Kolokoltsov
\paper Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 4
\pages 684--703
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 4
\pages 594--609

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Orsingher E., Polito F., Sakhno L., “Fractional non-linear, linear and sublinear death processes”, J. Stat. Phys., 141:1 (2010), 68–93  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Hahn M.G., Kobayashi K., Umarov S., “Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion”, Proc. Amer. Math. Soc., 139:2 (2011), 691–705  crossref  mathscinet  zmath  isi  elib  scopus
    3. Hahn M., Umarov S., “Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations”, Fract. Calc. Appl. Anal., 14:1 (2011), 56–79  crossref  mathscinet  zmath  isi  elib  scopus
    4. Jara M., Komorowski T., “Limit theorems for some continuous-time random walks”, Adv. in Appl. Probab., 43:3 (2011), 782–813  crossref  mathscinet  zmath  isi  scopus
    5. Meerschaert M.M., Straka P., Zhou Yu., McGough R.J., “Stochastic solution to a time-fractional attenuated wave equation”, Nonlinear Dynam., 70:2 (2012), 1273–1281  crossref  mathscinet  isi  elib  scopus
    6. Bolster D., Meerschaert M.M., Sikorskii A., “Product rule for vector fractional derivatives”, Fract. Calc. Appl. Anal., 15:3 (2012), 463–478  crossref  mathscinet  zmath  isi  elib  scopus
    7. Kochubei A.N., “Fractional-parabolic systems”, Potential Anal., 37:1 (2012), 1–30  crossref  mathscinet  zmath  isi  elib  scopus
    8. Fedotov S., Falconer S., “Subdiffusive master equation with space-dependent anomalous exponent and structural instability”, Phys. Rev. E, 85:3 (2012), 031132, 6 pp.  crossref  mathscinet  adsnasa  isi  elib  scopus
    9. Straka P., Meerschaert M.M., McGough R.J., Zhou Yu., “Fractional wave equations with attenuation”, Fract. Calc. Appl. Anal., 16:1 (2013), 262–272  crossref  mathscinet  zmath  isi  elib  scopus
    10. Meerschaert M.M., Straka P., “Inverse Stable Subordinators”, Math. Model. Nat. Phenom., 8:2 (2013), 1–16  crossref  mathscinet  zmath  isi  elib  scopus
    11. N. S. Arkashov, V. A. Seleznev, “On one model of sub- and superdiffusion on topological spaces with a self-similar structure”, Theory Probab. Appl., 60:2 (2016), 173–186  mathnet  crossref  crossref  isi  elib
    12. Kolokoltsov V., “on Fully Mixed and Multidimensional Extensions of the Caputo and Riemann-Liouville Derivatives, Related Markov Processes and Fractional Differential Equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073  crossref  mathscinet  zmath  isi  elib  scopus
    13. Lv L., Xiao J., Fan L., Ren F., “Correlated Continuous Time Random Walk and Option Pricing”, Physica A, 447 (2016), 100–107  crossref  mathscinet  adsnasa  isi  scopus
    14. Hernandez-Hernandez M.E., Kolokoltsov V.N., “On the solution of two-sided fractional ordinary differential equations of Caputo type”, Fract. Calc. Appl. Anal., 19:6 (2016), 1393–1413  crossref  mathscinet  zmath  isi  scopus
    15. Kelbert M., Konakov V., Menozzi S., “Weak error for Continuous Time Markov Chains related to fractional in time P(I)DEs”, Stoch. Process. Their Appl., 126:4 (2016), 1145–1183  crossref  mathscinet  zmath  isi  elib  scopus
    16. Baeumer B., Straka P., “Fokker–Planck and Kolmogorov backward equations for continuous time random walk scaling limits”, Proc. Amer. Math. Soc., 145:1 (2017), 399–412  crossref  mathscinet  zmath  isi  elib  scopus
    17. Hernandez-Hernandez M.E., Kolokoltsov V.N., Toniazzi L., “Generalised Fractional Evolution Equations of Caputo Type”, Chaos Solitons Fractals, 102 (2017), 184–196  crossref  mathscinet  zmath  isi  scopus
    18. Leonenko N.N., Papic I., Sikorskii A., Suvak N., “Correlated Continuous Time Random Walks and Fractional Pearson Diffusions”, Bernoulli, 24:4B (2018), 3603–3627  crossref  mathscinet  zmath  isi  scopus
    19. Orsingher E., Ricciuti C., Toaldo B., “On Semi-Markov Processes and Their Kolmogorov'S Integro-Differential Equations”, J. Funct. Anal., 275:4 (2018), 830–868  crossref  mathscinet  zmath  isi  scopus
    20. Meerschaert M.M., Toaldo B., “Relaxation Patterns and Semi-Markov Dynamics”, Stoch. Process. Their Appl., 129:8 (2019), 2850–2879  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:417
    Full text:76

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020