RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2008, Volume 53, Issue 4, Pages 704–731 (Mi tvp2461)  

This article is cited in 2 scientific papers (total in 2 papers)

Equivalent supermartingale densities and measures in discrete time infinite horizon market models

D. B. Rokhlin

Rostov State University

Abstract: We consider a general discrete time infinite horizon securities market model in which the set $\mathscr{W}$ of stochastic wealth processes, corresponding to investment strategies, is subject to a number of axioms with financial interpretation. We obtain criteria for the existence of equivalent supermartingale densities and measures for the set $\mathscr{W}_+$ of nonnegative elements of $\mathscr{W}$. These criteria are expressed in terms of various no-arbitrage conditions. The most complete results are formulated for Fatou closed sets $\mathscr{W}$. This closedness condition is satisfied by the traditional market model with a finite number of basic assets. A feature of the paper consists of applying the Kreps–Yan theorem for the space $L ^\infty $ with the norm topology. With the use of this theorem we establish the existence of an equivalent supermartingale density under the absence of free lunch with vanishing risk condition for strategies with finite horizons.

Keywords: supermartingale densities, no-arbitrage criteria, Kreps–Yan theorem, free lunch, fork-convexity, change of numй, raire.

DOI: https://doi.org/10.4213/tvp2461

Full text: PDF file (3301 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2009, 53:4, 626–647

Bibliographic databases:

Received: 18.10.2006
Revised: 04.07.2007

Citation: D. B. Rokhlin, “Equivalent supermartingale densities and measures in discrete time infinite horizon market models”, Teor. Veroyatnost. i Primenen., 53:4 (2008), 704–731; Theory Probab. Appl., 53:4 (2009), 626–647

Citation in format AMSBIB
\Bibitem{Rok08}
\by D.~B.~Rokhlin
\paper Equivalent supermartingale densities and measures in discrete time infinite horizon market models
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 4
\pages 704--731
\mathnet{http://mi.mathnet.ru/tvp2461}
\crossref{https://doi.org/10.4213/tvp2461}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2766142}
\zmath{https://zbmath.org/?q=an:05701638}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 4
\pages 626--647
\crossref{https://doi.org/10.1137/S0040585X97983869}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000273141700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73549087185}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2461
  • https://doi.org/10.4213/tvp2461
  • http://mi.mathnet.ru/eng/tvp/v53/i4/p704

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. V. Khasanov, “On the upper hedging price of contingent claims”, Theory Probab. Appl., 57:4 (2013), 607–618  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    2. V. M. Khametov, E. A. Shelemekh, “Extremal measures and hedging in American options”, Autom. Remote Control, 77:6 (2016), 1041–1059  mathnet  crossref  isi  elib  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:276
    Full text:61
    References:53

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020