|
This article is cited in 9 scientific papers (total in 9 papers)
Bounds for the Rate of Strong Approximation in the Multidimensional Invariance Principle
F. Götzea, A. Yu. Zaitsevb a Bielefeld University, Department of Mathematics
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The goal of this paper is to derive consequences of the result of Zaitsev [Theory Probab. Appl., 45 (2001), pp. 624–642; 46 (2002), pp. 490–514; 676–698]. We establish bounds for the rate of strong Gaussian approximation of sums of independent $\mathbf{R}^d$-valued random vectors $\xi_j$ having finite moments $\mathbf{E}\|\xi_j\|^\gamma$, $\gamma\ge 2$. A multidimensional version of the results of Sakhanenko [Trudy Inst. Mat., 5 (1985), pp. 27–44 (in Russian)] is obtained.
Keywords:
multidimensional invariance principle, strong approximation, sums of independent random vectors.
DOI:
https://doi.org/10.4213/tvp2484
Full text:
PDF file (1965 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2009, 53:1, 59–80
Bibliographic databases:
Received: 31.07.2007
Language:
Citation:
F. Götze, A. Yu. Zaitsev, “Bounds for the Rate of Strong Approximation in the Multidimensional Invariance Principle”, Teor. Veroyatnost. i Primenen., 53:1 (2008), 100–123; Theory Probab. Appl., 53:1 (2009), 59–80
Citation in format AMSBIB
\Bibitem{GotZai08}
\by F.~G\"otze, A.~Yu.~Zaitsev
\paper Bounds for the Rate of Strong Approximation in the Multidimensional Invariance Principle
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 1
\pages 100--123
\mathnet{http://mi.mathnet.ru/tvp2484}
\crossref{https://doi.org/10.4213/tvp2484}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2760567}
\zmath{https://zbmath.org/?q=an:1196.60053}
\elib{https://elibrary.ru/item.asp?id=20732682}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 1
\pages 59--80
\crossref{https://doi.org/10.1137/S0040585X9798350X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264940300004}
\elib{https://elibrary.ru/item.asp?id=13600744}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62249194862}
Linking options:
http://mi.mathnet.ru/eng/tvp2484https://doi.org/10.4213/tvp2484 http://mi.mathnet.ru/eng/tvp/v53/i1/p100
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Yu. Zaitsev, “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors”, J. Math. Sci. (N. Y.), 163:4 (2010), 399–408
-
F. Götze, A. Yu. Zaitsev, “Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments”, J. Math. Sci. (N. Y.), 167:4 (2010), 495–500
-
F. Götze, A. Yu. Zaitsev, “Estimates for the rate of strong approximation in Hilbert space”, Siberian Math. J., 52:4 (2011), 628–638
-
A. Yu. Zaitsev, “Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle”, J. Math. Sci. (N. Y.), 188:6 (2013), 689–693
-
A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761
-
Trapani L., “Comments on: Extensions of Some Classical Methods in Change Point Analysis Discussion”, Test, 23:2 (2014), 283–286
-
Berkes I., Liu W., Wu W.B., “Komlos-Major-Tusnady Approximation Under Dependence”, Ann. Probab., 42:2 (2014), 794–817
-
Merlevede F., Rio E., “Strong Approximation For Additive Functionals of Geometrically Ergodic Markov Chains”, Electron. J. Probab., 20 (2015), 1–27
-
M. A. Lifshits, Ya. Yu. Nikitin, V. V. Petrov, A. Yu. Zaitsev, A. A. Zinger, “Toward the history of the Saint Petersburg school of probability and statistics. I. Limit theorems for sums of independent random variables”, Vestn. St Petersb. Univ. Math., 51:2 (2018), 144–163
|
Number of views: |
This page: | 268 | Full text: | 86 | References: | 52 |
|