|
This article is cited in 9 scientific papers (total in 9 papers)
On a stochastic optimality of the feedback control in the
LQG-problem
T. A. Belkinaa, Yu. M. Kabanovb, E. L. Presmana a Central Economics and Mathematics Institute, RAS
b Laboratoire de Mathématiques, Université de Franche-Comté
Abstract:
We show that the optimal feedback control $\widehat u$ in the
standard nonhomogeneous LQG-problem with infinite horizon has
the following property. There is a constant $b_*$ such that,
whatever $b> b_*$ is, the deficiency process of optimal control
with respect to any possible control $u$, i.e., the difference
$J_T(\widehat u\hspace*{0.2pt})- J_T(u)$ between the optimal cost process
$J_T(\widehat u\hspace*{0.2pt})$ and the cost process corresponding to control
$u$, is majorated at infinity by a deterministic function $b\log
T$. In other words, $b\log T$ is an upper function for any
deficiency process. This result, combined with an example of an
LQG-regulator where,
for certain $b>0$, the function $b\log T$ is
not an upper function for certain deficiency processes, gives an
answer to the long-standing open problem about the best possible
rate function for sensitive probabilistic criteria. Our setting
covers the optimal tracking problem.
Keywords:
linear-quadratic regulator, optimality almost surely, observability, controllability, Riccati equation, martingale law of large numbers, upper functions, Ornstein–Uhlenbeck process.
DOI:
https://doi.org/10.4213/tvp250
Full text:
PDF file (1427 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2004, 48:4, 592–603
Bibliographic databases:
Received: 25.12.2002
Citation:
T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the
LQG-problem”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 661–675; Theory Probab. Appl., 48:4 (2004), 592–603
Citation in format AMSBIB
\Bibitem{BelKabPre03}
\by T.~A.~Belkina, Yu.~M.~Kabanov, E.~L.~Presman
\paper On a stochastic optimality of the feedback control in the
LQG-problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 4
\pages 661--675
\mathnet{http://mi.mathnet.ru/tvp250}
\crossref{https://doi.org/10.4213/tvp250}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2143209}
\zmath{https://zbmath.org/?q=an:1063.93052}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 4
\pages 592--603
\crossref{https://doi.org/10.1137/S0040585X97980695}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000226305500002}
Linking options:
http://mi.mathnet.ru/eng/tvp250https://doi.org/10.4213/tvp250 http://mi.mathnet.ru/eng/tvp/v48/i4/p661
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
T. A. Belkina, V. I. Rotar', “On optimality in probability and almost surely for processes with a communication property. I. The discrete time case”, Theory Probab. Appl., 50:1 (2006), 16–33
-
T. A. Belkina, M. S. Levochkina, “Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables”, Discrete Math. Appl., 16:2 (2006), 135–153
-
T. A. Belkina, E. S. Palamarchuk, “On stochastic optimality for a linear controller with attenuating disturbances”, Autom. Remote Control, 74:4 (2013), 628–641
-
E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96
-
E. S. Palamarchuk, “Stabilization of linear stochastic systems with a discount: modeling and estimation of the long-term effects from the application of optimal control strategies”, Math. Models Comput. Simul., 7:4 (2015), 381–388
-
Palamarchuk E., “On Infinite Time Linear-Quadratic Gaussian Control of Inhomogeneous Systems”, 2016 European Control Conference (Ecc), IEEE, 2016, 2477–2482
-
E. S. Palamarchuk, “Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem”, Theory Probab. Appl., 62:4 (2018), 522–533
-
Palamarchuk E.S., “On the Generalization of Logarithmic Upper Function For Solution of a Linear Stochastic Differential Equation With a Nonexponentially Stable Matrix”, Differ. Equ., 54:2 (2018), 193–200
-
E. S. Palamarchuk, “O verkhnikh funktsiyakh dlya anomalnykh diffuzii, modeliruemykh protsessom Ornshteina–Ulenbeka s peremennymi koeffitsientami”, Teoriya veroyatn. i ee primen., 64:2 (2019), 258–282
|
Number of views: |
This page: | 358 | Full text: | 63 | References: | 47 |
|