RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2009, Volume 54, Issue 1, Pages 116–148 (Mi tvp2549)  

This article is cited in 12 scientific papers (total in 12 papers)

Global properties of transition pProbabilities of singular diffusions

G. Metafunea, D. Pallaraa, A. Rhandib

a Lecce University
b University of Salerno

Abstract: We prove global Sobolev regularity and pointwise upper bounds for transition densities associated with second order differential operators in $R^N$ with unbounded drift. As an application, we obtain sufficient conditions implying the differentiability of the associated transition semigroup on the space of bounded and continuous functions on $R^N$.

Keywords: transition semigroups, transition probabilities, parabolic regularity

DOI: https://doi.org/10.4213/tvp2549

Full text: PDF file (298 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2010, 54:1, 68–96

Bibliographic databases:

Received: 28.03.2008
Language:

Citation: G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition pProbabilities of singular diffusions”, Teor. Veroyatnost. i Primenen., 54:1 (2009), 116–148; Theory Probab. Appl., 54:1 (2010), 68–96

Citation in format AMSBIB
\Bibitem{MetPalRha09}
\by G.~Metafune, D.~Pallara, A.~Rhandi
\paper Global properties of transition pProbabilities of singular diffusions
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 1
\pages 116--148
\mathnet{http://mi.mathnet.ru/tvp2549}
\crossref{https://doi.org/10.4213/tvp2549}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2766650}
\zmath{https://zbmath.org/?q=an:05771291}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 1
\pages 68--96
\crossref{https://doi.org/10.1137/S0040585X97984012}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276689500005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77749330114}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2549
  • https://doi.org/10.4213/tvp2549
  • http://mi.mathnet.ru/eng/tvp/v54/i1/p116

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    2. Fornaro S., Fusco N., Metafune G., Pallara D., “Sharp upper bounds for the density of some invariant measures”, Proc. Roy. Soc. Edinburgh Sect. A, 139:6 (2009), 1145–1161  crossref  mathscinet  zmath  isi  elib  scopus
    3. Shaposhnikov S.V., “Lower estimates for densities of solutions to parabolic equations for measures”, Dokl. Math., 80:3 (2009), 877–881  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    4. Shaposhnikov S.V., “Estimates of solutions of parabolic equations for measures”, Dokl. Math., 82:2 (2010), 769–772  crossref  mathscinet  zmath  isi  elib  elib  scopus
    5. Aibeche A., Laidoune K., Rhandi A., “Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials”, Arch. Math. (Basel), 94:6 (2010), 565–577  crossref  mathscinet  zmath  isi  scopus
    6. Metafune G., Ouhabaz E.M., Pallara D., “Long time behavior of heat kernels of operators with unbounded drift terms”, J. Math. Anal. Appl., 377:1 (2011), 170–179  crossref  mathscinet  zmath  isi  elib  scopus
    7. S. V. Shaposhnikov, “Regular and qualitative properties of solutions for parabolic equations for measures”, Theory Probab. Appl., 56:2 (2011), 252–279  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. S. V. Shaposhnikov, “On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation”, Theory Probab. Appl., 56:1 (2012), 96–115  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. Goldstein G.R., Goldstein J.A., Rhandi A., “Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential”, Appl. Anal., 91:11 (2012), 2057–2071  crossref  mathscinet  zmath  isi  scopus
    10. S. V. Shaposhnikov, “The Fokker–Planck–Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix”, Trans. Moscow Math. Soc., 74 (2013), 15–29  mathnet  crossref  mathscinet  zmath  elib
    11. Kunze M. Lorenzi L. Rhandi A., “Kernel estimates for nonautonomous Kolmogorov equations”, Adv. Math., 287 (2016), 600–639  crossref  mathscinet  zmath  isi  elib  scopus
    12. Cirant M., Tonon D., “Time-Dependent Focusing Mean-Field Games: the Sub-Critical Case”, J. Dyn. Differ. Equ., 31:1 (2019), 49–79  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:307
    Full text:54
    References:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019