RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1972, Volume 17, Issue 2, Pages 372–377 (Mi tvp2599)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On testing the symmetry of distribution

A. I. Orlov

Moscow

Abstract: Let $F(x)$ be an unknown distribution function. The hypothesis to be tested is the symmetry of $F(x)$ at $x=0\colon F(-x)=1-F(x)$. A test of the $\omega^2$-test type is constructed, and its asymptotic properties are investigated.

Full text: PDF file (395 kB)

English version:
Theory of Probability and its Applications, 1973, 17:2, 357–361

Bibliographic databases:

Received: 11.12.1970

Citation: A. I. Orlov, “On testing the symmetry of distribution”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 372–377; Theory Probab. Appl., 17:2 (1973), 357–361

Citation in format AMSBIB
\Bibitem{Orl72}
\by A.~I.~Orlov
\paper On testing the symmetry of distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 372--377
\mathnet{http://mi.mathnet.ru/tvp2599}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=301840}
\zmath{https://zbmath.org/?q=an:0253.62026}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 357--361
\crossref{https://doi.org/10.1137/1117041}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2599
  • http://mi.mathnet.ru/eng/tvp/v17/i2/p372

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. E. Vyazilov, “The residual empirical distribution function in GARCH(1,1) and its application in hypothesis testing”, Russian Math. Surveys, 54:4 (1999), 856–857  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:157
    Full text:94

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020