RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1972, Volume 17, Issue 3, Pages 401–423 (Mi tvp2640)  

This article is cited in 2 scientific papers (total in 2 papers)

Convergence and limit theorems for subsequences of random variables

V. F. Gaposhkin

Moscow

Abstract: It is shown that if $X_n$ $(n=1,2,…)$ are random variables and $X_n\to0$ weakly in $L_2(\Omega)$, $X_n^2\to1$ weakly in $L_1(\Omega)$ then there exists a subsequence $X_{n_k}$ which is equivalent to $\{Y_k\}$, and $\sum_1^na_kY_k$ is a martingale (see Lemma A).
This fact is used in the rest of the paper to prove some results about subsequences of random variables: in section 2 — convergence and the strong law of large numbers; in section 3 — the central limit theorem; in section 4 — the law of the iterated logarithm.

Full text: PDF file (1126 kB)

English version:
Theory of Probability and its Applications, 1973, 17:3, 378–400

Bibliographic databases:

Received: 12.03.1970

Citation: V. F. Gaposhkin, “Convergence and limit theorems for subsequences of random variables”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 401–423; Theory Probab. Appl., 17:3 (1973), 378–400

Citation in format AMSBIB
\Bibitem{Gap72}
\by V.~F.~Gaposhkin
\paper Convergence and limit theorems for subsequences of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 3
\pages 401--423
\mathnet{http://mi.mathnet.ru/tvp2640}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=310948}
\zmath{https://zbmath.org/?q=an:0273.60010}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 3
\pages 378--400
\crossref{https://doi.org/10.1137/1117049}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2640
  • http://mi.mathnet.ru/eng/tvp/v17/i3/p401

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Astashkin, “Identification of subsystems “majorized” by the Rademacher system”, Math. Notes, 65:4 (1999), 407–417  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. S. V. Astashkin, “Rademacher functions in symmetric spaces”, Journal of Mathematical Sciences, 169:6 (2010), 725–886  mathnet  crossref  mathscinet  zmath  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:115
    Full text:56

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019