RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Subscription Guidelines for authors Submit a manuscript Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Teor. Veroyatnost. i Primenen.: Year: Volume: Issue: Page: Find

 Teor. Veroyatnost. i Primenen., 1972, Volume 17, Issue 3, Pages 518–533 (Mi tvp2662)

On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers

G. A. Kozlov

Moscow

Abstract: An approach to estimation of the Monte-Carlo technique error caused by imperfections of the distribution of random numbers is proposed. The approach is illustrated by an example of the simple integral $\overline\varphi=\int_0^1\varphi(x) dx$ calculation by the method of indeopendent tests. The error is estimated by
$$S=\sup U(\varphi),\quad\varphi\in G,\quad U(\varphi)=(\int_0^1\varphi(x) dF(x)-\overline\varphi)/\sqrt{\int_0^1(\varphi(x)-\overline\varphi)^2 dx},$$
where $F$ is the distribution function of random numbers in the interval $[0,1]$, $G$ is the class of functions with finite “standartized variation”:
$$G=\{\varphi\colon\bigvee_0^1\varphi/\sqrt{\int_0^1(\varphi(x)-\overline\varphi)^2 dx}\le v\}.$$

It is shown that the problem of determining the value $S$ can be reduced to a variational problem of finding the function that minimizes the functional $U(\varphi)=\int_0^1\varphi dF$ under the following restrictions:
$$\int_0^1\varphi dx=0,\quad\int_0^1\varphi^2 dx=1\quadand\quad\bigvee_0^1\varphi\le v$$
A solution of this variational problem is given.

Full text: PDF file (865 kB)

English version:
Theory of Probability and its Applications, 1973, 17:3, 493–509

Bibliographic databases:

Citation: G. A. Kozlov, “On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 518–533; Theory Probab. Appl., 17:3 (1973), 493–509

Citation in format AMSBIB
\Bibitem{Koz72} \by G.~A.~Kozlov \paper On estimation of the error of Monte-Carlo technique caused by imperfections of the distribution of random numbers \jour Teor. Veroyatnost. i Primenen. \yr 1972 \vol 17 \issue 3 \pages 518--533 \mathnet{http://mi.mathnet.ru/tvp2662} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=309262} \zmath{https://zbmath.org/?q=an:0261.62017} \transl \jour Theory Probab. Appl. \yr 1973 \vol 17 \issue 3 \pages 493--509 \crossref{https://doi.org/10.1137/1117057} 

• http://mi.mathnet.ru/eng/tvp2662
• http://mi.mathnet.ru/eng/tvp/v17/i3/p518

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles