|
Short Communications
An estimate of the convergence rate in a renewal theorem for random variables defined on a Markov chain
A. E. Zaslavskii Novosibirsk State University
Abstract:
A sequence of sums of random variables with arbitrary sign defined on transitions of a homogeneous aperiodic discrete Markov chain is represented by Doeblin's method ([2],[3]) as a sequence of sums of independent random variables. The results of [5] being applied, the convergence rate in a renewal theorem ([1]) is estimated.
Full text:
PDF file (558 kB)
English version:
Theory of Probability and its Applications, 1973, 17:3, 535–543
Bibliographic databases:
Received: 03.08.1970
Citation:
A. E. Zaslavskii, “An estimate of the convergence rate in a renewal theorem for random variables defined on a Markov chain”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 563–573; Theory Probab. Appl., 17:3 (1973), 535–543
Citation in format AMSBIB
\Bibitem{Zas72}
\by A.~E.~Zaslavskii
\paper An estimate of the convergence rate in a~renewal theorem for random variables defined on a~Markov chain
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 3
\pages 563--573
\mathnet{http://mi.mathnet.ru/tvp2669}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=307374}
\zmath{https://zbmath.org/?q=an:0276.60084}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 3
\pages 535--543
\crossref{https://doi.org/10.1137/1117064}
Linking options:
http://mi.mathnet.ru/eng/tvp2669 http://mi.mathnet.ru/eng/tvp/v17/i3/p563
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 81 | Full text: | 63 |
|