RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2009, Volume 54, Issue 2, Pages 209–225 (Mi tvp2696)  

This article is cited in 10 scientific papers (total in 10 papers)

On one transformations family of Gaussian random functions

A. I. Nazarov

St. Petersburg State University, Department of Mathematics and Mechanics

DOI: https://doi.org/10.4213/tvp2696

Full text: PDF file (217 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2010, 54:2, 203–216

Bibliographic databases:

Received: 02.04.2008

Citation: A. I. Nazarov, “On one transformations family of Gaussian random functions”, Teor. Veroyatnost. i Primenen., 54:2 (2009), 209–225; Theory Probab. Appl., 54:2 (2010), 203–216

Citation in format AMSBIB
\Bibitem{Naz09}
\by A.~I.~Nazarov
\paper On one transformations family of Gaussian random functions
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 2
\pages 209--225
\mathnet{http://mi.mathnet.ru/tvp2696}
\crossref{https://doi.org/10.4213/tvp2696}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2761552}
\zmath{https://zbmath.org/?q=an:05769140}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 2
\pages 203--216
\crossref{https://doi.org/10.1137/S0040585X97984103}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000278544500002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956499093}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2696
  • https://doi.org/10.4213/tvp2696
  • http://mi.mathnet.ru/eng/tvp/v54/i2/p209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Vladimirov, I. A. Sheipak, “On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight”, Funct. Anal. Appl., 47:4 (2013), 261–270  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. A. Kirichenko, Ya. Yu. Nikitin, “Precise small deviations in $L_2$ of some Gaussian processes appearing in the regression context”, Cent. Eur. J. Math., 12:11 (2014), 1674–1686  crossref  mathscinet  zmath  isi  scopus
    3. N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821  mathnet  crossref
    4. A. I. Nazarov, Yu. P. Petrova, “The small ball asymptotics in Hilbertian norm for the Kac–Kiefer–Wolfowitz processes”, Theory Probab. Appl., 60:3 (2016), 460–480  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Gerard P., Grellier S., “The Cubic Szego Equation and Hankel Operators”, Asterisque, 2017, no. 389, 1+  mathscinet  isi
    6. Yu. P. Petrova, “Tochnaya asimptotika $L_2$-malykh uklonenii dlya nekotorykh protsessov Durbina”, Veroyatnost i statistika. 26, Zap. nauchn. sem. POMI, 466, POMI, SPb., 2017, 211–233  mathnet
    7. Nazarov A.I. Nikitin Ya.Yu., “On Small Deviation Asymptotics in l-2 of Some Mixed Gaussian Processes”, 6, no. 4, 2018, 55  crossref  zmath  isi  scopus
    8. Ibragimov I.A. Lifshits M.A. Nazarov A.I. Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236  crossref  isi  scopus
    9. Yu. P. Petrova, “On spectral asymptotics for a family of finite-dimensional perturbations of operators of trace class”, Dokl. Math., 98:1 (2018), 367–369  mathnet  crossref  crossref  zmath  isi  elib  scopus
    10. Barczy M., Lovas R.L., “Karhunen-Loeve Expansion For a Generalization of Wiener Bridge”, Lith. Math. J., 58:4 (2018), 341–359  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:309
    Full text:56
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019