RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1973, Volume 18, Issue 1, Pages 195–203 (Mi tvp2698)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On asymptotic behaviour of the degrees of vertices in a random graph

G. I. Ivchenko

Moscow

Abstract: A random non-oriented graph with $n$ vertices is considered, in which the edge between the $i$-th and the $j$-th vertices ($i,j=1,2,…,n$; $i\ne j$) exists with a probability $p$ independently of the other edges. The asymptotic behaviour of the minimum and maximum degrees of vertices as $n\to\infty$, $p=p(n)\to0$ is studied.

Full text: PDF file (541 kB)

English version:
Theory of Probability and its Applications, 1973, 18:1, 188–195

Bibliographic databases:

Received: 05.05.1971

Citation: G. I. Ivchenko, “On asymptotic behaviour of the degrees of vertices in a random graph”, Teor. Veroyatnost. i Primenen., 18:1 (1973), 195–203; Theory Probab. Appl., 18:1 (1973), 188–195

Citation in format AMSBIB
\Bibitem{Ivc73}
\by G.~I.~Ivchenko
\paper On asymptotic behaviour of the degrees of vertices in a~random graph
\jour Teor. Veroyatnost. i Primenen.
\yr 1973
\vol 18
\issue 1
\pages 195--203
\mathnet{http://mi.mathnet.ru/tvp2698}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=309802}
\zmath{https://zbmath.org/?q=an:0294.60009}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 18
\issue 1
\pages 188--195
\crossref{https://doi.org/10.1137/1118020}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2698
  • http://mi.mathnet.ru/eng/tvp/v18/i1/p195

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. D. Korshunov, “The main properties of random graphs with a large number of vertices and edges”, Russian Math. Surveys, 40:1 (1985), 121–198  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:223
    Full text:115

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020