RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2003, Volume 48, Issue 3, Pages 557–575 (Mi tvp270)  

This article is cited in 4 scientific papers (total in 4 papers)

Approximate optimal stopping of dependent sequences

R. Kühne, L. Rüschendorf

Albert Ludwigs University of Freiburg

Abstract: We consider optimal stopping of sequences of random variables satisfying some asymptotic independence property. Assuming that the embedded planar point processes converge to a Poisson process, we introduce some further conditions to obtain approximation of the optimal stopping problem of the discrete time sequence by the optimal stopping of the limiting Poisson process. This limiting problem can be solved in several cases. We apply this method to obtain approximations for the stopping of moving average sequences, of hidden Markov chains, and of max-autoregressive sequences. We also briefly discuss extensions to the case of Poisson cluster processes in the limit.

Keywords: optimal stopping, Poisson processes, asymptotic independence, moving average processes, hidden Markov chains.

DOI: https://doi.org/10.4213/tvp270

Full text: PDF file (1950 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2004, 48:3, 465–480

Bibliographic databases:

Received: 15.11.2000
Revised: 28.02.2003
Language:

Citation: R. Kühne, L. Rüschendorf, “Approximate optimal stopping of dependent sequences”, Teor. Veroyatnost. i Primenen., 48:3 (2003), 557–575; Theory Probab. Appl., 48:3 (2004), 465–480

Citation in format AMSBIB
\Bibitem{KuhRus03}
\by R.~K\"uhne, L.~R\"uschendorf
\paper Approximate optimal stopping of dependent sequences
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 3
\pages 557--575
\mathnet{http://mi.mathnet.ru/tvp270}
\crossref{https://doi.org/10.4213/tvp270}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2141350}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 3
\pages 465--480
\crossref{https://doi.org/10.1137/S0040585X97980567}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000224300900005}


Linking options:
  • http://mi.mathnet.ru/eng/tvp270
  • https://doi.org/10.4213/tvp270
  • http://mi.mathnet.ru/eng/tvp/v48/i3/p557

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Parlar M., Perry D., Stadje W., “Optimal shopping when the sales are on – A Markovian full–information best–choice problem”, Stochastic Models, 23:3 (2007), 351–371  crossref  mathscinet  zmath  isi  elib  scopus
    2. Faller A., Rueschendorf L., “On Approximative Solutions of Optimal Stopping Problems”, Adv in Appl Probab, 43:4 (2011), 1086–1108  crossref  mathscinet  zmath  isi  scopus
    3. Faller A., Rueschendorf L., “On Approximative Solutions of Multistopping Problems”, Ann Appl Probab, 21:5 (2011), 1965–1993  crossref  mathscinet  zmath  isi  elib  scopus
    4. Gordienko E., Novikov A., “Characterizations of Optimal Policies in a General Stopping Problem and Stability Estimating”, Probab. Eng. Inform. Sci., 28:3 (2014), 335–352  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:174
    Full text:63
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020