RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2003, Volume 48, Issue 2, Pages 254–273 (Mi tvp284)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: Let $X(n)=X(u,n)$, $n=0,1,\ldots $, be a time homogeneous ergodic real-valued Markov chain with transition probability $P(u,B)$ and initial value $u\equiv X(u,0)=X(0)$. We study the asymptotic behavior of the crossing probability of a given boundary $g(k)$, $k=0,1,\ldots,n$, by a trajectory $X(k)$, $k=0,1,\ldots,n$, that is the probability
$$ P\{\max_{k\le n}(X(k)-g(k))>0\}, $$
where the boundary $g(\cdot)$ depends, generally speaking, on $n$ and on a growing parameter $x$ in such a way that $\min_{k\le n}g(k)\to\infty$ as $x\to\infty$. The chain is assumed to be partially space-homogeneous, that is there exists $N\ge 0$ such that for $u>N$, $v>N$ the probability $P(u,dv)$ depends only on the difference $v-u$. In addition, it is assumed that there exists $\lambda>0$ such that
$$ \sup_{u\le 0}E e^{(u+\xi(u))\lambda}<\infty,\qquad \sup_{u\ge 0}E e^{\lambda\xi(u)}<\infty, $$
where $\xi(u)=X(u,1)-u$ is the increments of the chain at point $u$ in one step.
The present paper is a continuation of article [A. A. Borovkov, Theory Probab. Appl., 47 (2002), pp. 584–608], in which it is assumed that the tails of the distributions of $\xi(u)$ are regularly varying. Here we establish limit theorems describing under rather broad conditions the asymptotic behavior of the probabilities in question in the domains of large and normal deviations. Besides, asymptotic properties of the regeneration cycles to a positive atom are considered and an analog of the law of iterated logarithm is established.

Keywords: Markov chains, large deviations, boundary crossing, exponentially decaying tails, the law of iterated logarithm.

DOI: https://doi.org/10.4213/tvp284

Full text: PDF file (1688 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2004, 48:2, 226–242

Bibliographic databases:

Received: 17.12.2001

Citation: A. A. Borovkov, “Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 254–273; Theory Probab. Appl., 48:2 (2004), 226–242

Citation in format AMSBIB
\Bibitem{Bor03}
\by A.~A.~Borovkov
\paper Asymptotics of crossing probability of a boundary by the trajectory of a Markov chain. Exponentially decaying tails
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 254--273
\mathnet{http://mi.mathnet.ru/tvp284}
\crossref{https://doi.org/10.4213/tvp284}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2015452}
\zmath{https://zbmath.org/?q=an:1055.60069}
\elib{http://elibrary.ru/item.asp?id=13449321}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 226--242
\crossref{https://doi.org/10.1137/S0040585X97980361}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222357100003}


Linking options:
  • http://mi.mathnet.ru/eng/tvp284
  • https://doi.org/10.4213/tvp284
  • http://mi.mathnet.ru/eng/tvp/v48/i2/p254

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. G. Ragimov, F. D. Azizov, “The limit theorems for first passage time of Markov chain for nonlinear boundary”, Theory Probab. Appl., 57:1 (2013), 172–178  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:300
    Full text:38
    References:52

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019