|
This article is cited in 20 scientific papers (total in 20 papers)
Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component
A. A. Novikov University of Technology, Sydney
Abstract:
Using martingale technique, we show that a distribution of the first-passage time over a level for the Ornstein–Uhlenbeck process with jumps is exponentially bounded. In the case of absence of positive jumps, the Laplace transform for this passage time is found. Further, the maximal inequalities are also given when the marginal distribution is stable.
Keywords:
exponential martingales, first-passage times, Ornstein–Uhlenbeck process, Laplace transform, moment Wald's identity, maximal inequalities, stable distribution.
DOI:
https://doi.org/10.4213/tvp288
Full text:
PDF file (1517 kB)
References:
PDF file
HTML file
English version:
Theory of Probability and its Applications, 2004, 48:2, 288–303
Bibliographic databases:
Received: 23.01.2003
Citation:
A. A. Novikov, “Martingales and first passage times for Ornstein–Uhlenbeck processes with a jump component”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 340–358; Theory Probab. Appl., 48:2 (2004), 288–303
Citation in format AMSBIB
\Bibitem{Nov03}
\by A.~A.~Novikov
\paper Martingales and first passage times for Ornstein--Uhlenbeck processes with a jump component
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 340--358
\mathnet{http://mi.mathnet.ru/tvp288}
\crossref{https://doi.org/10.4213/tvp288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2015456}
\zmath{https://zbmath.org/?q=an:1056.60039}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 288--303
\crossref{https://doi.org/10.1137/S0040585X97980403}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222357100007}
Linking options:
http://mi.mathnet.ru/eng/tvp288https://doi.org/10.4213/tvp288 http://mi.mathnet.ru/eng/tvp/v48/i2/p340
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Patie P., “On a martingale associated to generalized Ornstein–Uhlenbeck processes and an application to finance”, Stochastic Process. Appl., 115:4 (2005), 593–607
-
Novikov A., Melchers R.E., Shinjikashvili E., Kordzakhia N., “First passage time of filtered Poisson process with exponential shape function”, Probabilistic Engineering Mechanics, 20:1 (2005), 57–65
-
Jacobsen M., Jensen A.T., “Exit times for a class of piecewise exponential Markov processes with two–sided jumps”, Stochastic Process. Appl., 117:9 (2007), 1330–1356
-
Jakubowski T., “The estimates of the mean first exit time from a ball for the alpha-stable Ornstein–Uhlenbeck processes”, Stochastic Process. Appl., 117:10 (2007), 1540–1560
-
A. A. Novikov, “On Distributions of First Passage Times and Optimal Stopping of AR(1) Sequences”, Theory Probab. Appl., 53:3 (2009), 419–429
-
Avram F., Usabel M., “The Gerber-Shiu expected discounted penalty-reward function under an affine jump-diffusion model”, Astin Bull., 38:2 (2008), 461–481
-
Novikov A., Kordzakhia N., “Martingales and first passage times of AR(1) sequences”, Stochastics, 80:2-3 (2008), 197–210
-
Borovkov K., Novikov A., “On exit times of Levy-driven Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 78:12 (2008), 1517–1525
-
Xing X., Zhang W., Wang Y., “The stationary distributions of two classes of reflected Ornstein–Uhlenbeck processes”, J. Appl. Probab., 46:3 (2009), 709–720
-
Bankovsky D., Sly A., “Exact conditions for no ruin for the generalised Ornstein–Uhlenbeck process”, Stochastic Process. Appl., 119:8 (2009), 2544–2562
-
Abbring J.H., “Mixed Hitting-Time Models”, Econometrica, 80:2 (2012), 783–819
-
Bo L., “First Passage Times of Reflected Ornstein–Uhlenbeck Processes with Two-Sided Jumps”, Queueing Syst., 73:1 (2013), 105–118
-
Bo L., Ren G., Wang Y., Yang X., “First Passage Times of Reflected Generalized Ornstein–Uhlenbeck Processes”, Stoch. Dyn., 13:1 (2013), 1250014
-
Graczyk P., Jakubowski T., Luks T., “Martin Representation and Relative Fatou Theorem for Fractional Laplacian with a Gradient Perturbation”, Positivity, 17:4 (2013), 1043–1070
-
Hsiau Sh.-R., Lin Y.-Sh., Yao Y.-Ch., “Logconcave Reward Functions and Optimal Stopping Rules of Threshold Form”, Electron. J. Probab., 19 (2014), 120
-
Duhalde X. Foucart C. Ma Ch., “On the Hitting Times of Continuous-State Branching Processes With Immigration”, Stoch. Process. Their Appl., 124:12 (2014), 4182–4201
-
Habtemicael S. SenGupta I., “Ornstein–Uhlenbeck Processes For Geophysical Data Analysis”, Physica A, 399 (2014), 147–156
-
Ma R., “Lamperti Transformation For Continuous-State Branching Processes With Competition and Applications”, Stat. Probab. Lett., 107 (2015), 11–17
-
Zhou J., Wu L., Bai Ya., “Occupation Times of Levy-Driven Ornstein–Uhlenbeck Processes With Two-Sided Exponential Jumps and Applications”, Stat. Probab. Lett., 125 (2017), 80–90
-
Ernstsen R.R., Boomsma T.K., “Valuation of Power Plants”, Eur. J. Oper. Res., 266:3 (2018), 1153–1174
|
Number of views: |
This page: | 820 | Full text: | 90 | References: | 120 |
|