RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2002, Volume 47, Issue 1, Pages 39–58 (Mi tvp2965)  

This article is cited in 6 scientific papers (total in 6 papers)

The simplest random walks for the Dirichlet problem

G. N. Mil'shteina, M. V. Tretyakovb

a Ural State University
b Mathematics Department, University of Leicester

Abstract: The Dirichlet problem for both parabolic and elliptic equations is considered. A solution of the corresponding characteristic system of stochastic differential equations is approximated in the weak sense by a Markov chain. If a state of the chain comes close to the boundary of the domain in which the problem is considered, then in the next step the chain either stops on the boundary or goes inside the domain with some probability due to an interpolation law. An approximate solution of the Dirichlet problem has the form of expectation of a functional of the chain trajectory. This makes it possible to use the Monte Carlo technique. The proposed methods are the simplest ones because they are based on the weak Euler approximation and linear interpolation. Convergence theorems, which give accuracy orders of the methods, are proved. Results of some numerical tests are presented.

Keywords: Dirichlet problem for parabolic and elliptic equations, probabilistic representations, weak approximation of solutions of stochastic differential equations, Markov chains, random walks.

DOI: https://doi.org/10.4213/tvp2965

Full text: PDF file (1933 kB)

English version:
Theory of Probability and its Applications, 2003, 47:1, 53–68

Bibliographic databases:

Received: 16.11.1999

Citation: G. N. Mil'shtein, M. V. Tretyakov, “The simplest random walks for the Dirichlet problem”, Teor. Veroyatnost. i Primenen., 47:1 (2002), 39–58; Theory Probab. Appl., 47:1 (2003), 53–68

Citation in format AMSBIB
\Bibitem{MilTre02}
\by G.~N.~Mil'shtein, M.~V.~Tretyakov
\paper The simplest random walks for the Dirichlet problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 1
\pages 39--58
\mathnet{http://mi.mathnet.ru/tvp2965}
\crossref{https://doi.org/10.4213/tvp2965}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1978694}
\zmath{https://zbmath.org/?q=an:1038.60066}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 1
\pages 53--68
\crossref{https://doi.org/S0040585X97979433}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000183800400004}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2965
  • https://doi.org/10.4213/tvp2965
  • http://mi.mathnet.ru/eng/tvp/v47/i1/p39

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Milstein G.N., Tretyakov M.V., “Numerical solution of the Dirichlet problem for nonlinear parabolic equations by a probabilistic approach”, IMA Journal of Numerical Analysis, 21:4 (2001), 887–917  crossref  mathscinet  zmath  isi  scopus
    2. Buchmann F.M., “Simulation of stopped diffusions”, Journal of Computational Physics, 202:2 (2005), 446–462  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. Goldberg M.J., Kim S., “Applications of some formulas for finite Markov chains”, Appl Comput Harmon Anal, 30:1 (2011), 37–46  crossref  mathscinet  zmath  isi  scopus
    4. Milstein G.N., Tretyakov M.V., “Solving the Dirichlet problem for Navier–Stokes equations by probabilistic approach”, BIT Numerical Mathematics, 52:1 (2012), 141–153  crossref  mathscinet  zmath  isi  scopus
    5. Chigansky P. Klebaner F.C., “The Euler-Maruyama Approximation for the Absorption Time of the Cev Diffusion”, Discrete Contin. Dyn. Syst.-Ser. B, 17:5 (2012), 1455–1471  crossref  mathscinet  zmath  isi  elib  scopus
    6. Bernal F., Acebron J.A., “A Comparison of Higher-Order Weak Numerical Schemes for Stopped Stochastic Differential Equations”, Commun. Comput. Phys., 20:3 (2016), 703–732  crossref  mathscinet  zmath  isi  elib  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:231
    Full text:57

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019