RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2002, Volume 47, Issue 1, Pages 80–89 (Mi tvp2995)  

This article is cited in 2 scientific papers (total in 2 papers)

On the asymptotics of the density of an infinitely divisible distribution at infinity

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: In this paper the asymptotic properties at infinity of the density of an infinitely divisible distribution are studied in the case where an absolutely continuous component of the Lévy measure of this distribution varies dominantly at infinity. The presentation is given in terms of the so-called weak equivalence of functions which, in the case of weakly oscillating, and, in particular, the case of the density of an infinite divisible distribution regularly varying at infinity, coincides with ordinary equivalence.

Keywords: infinitely divisible distributions, spectral Lévy measure, density of a distribution, weak equivalence of functions, regularly varying functions, weakly oscillating functions, dominated variation of functions.

DOI: https://doi.org/10.4213/tvp2995

Full text: PDF file (813 kB)

English version:
Theory of Probability and its Applications, 2003, 47:1, 114–122

Bibliographic databases:

Received: 10.04.2000

Citation: A. L. Yakymiv, “On the asymptotics of the density of an infinitely divisible distribution at infinity”, Teor. Veroyatnost. i Primenen., 47:1 (2002), 80–89; Theory Probab. Appl., 47:1 (2003), 114–122

Citation in format AMSBIB
\Bibitem{Yak02}
\by A.~L.~Yakymiv
\paper On the asymptotics of the density of an infinitely divisible distribution at infinity
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 1
\pages 80--89
\mathnet{http://mi.mathnet.ru/tvp2995}
\crossref{https://doi.org/10.4213/tvp2995}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1978697}
\zmath{https://zbmath.org/?q=an:1033.60010}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 1
\pages 114--122
\crossref{https://doi.org/S0040585X97979469}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000183800400009}


Linking options:
  • http://mi.mathnet.ru/eng/tvp2995
  • https://doi.org/10.4213/tvp2995
  • http://mi.mathnet.ru/eng/tvp/v47/i1/p80

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pakes A.G., “Convolution equivalence and infinite divisibility”, J. Appl. Probab., 41:2 (2004), 407–424  crossref  mathscinet  zmath  isi  scopus
    2. Kaleta K., Sztonyk P., “Spatial Asymptotics At Infinity For Heat Kernels of Integro-Differential Operators”, Trans. Am. Math. Soc., 371:9 (2019), 6627–6663  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:177
    Full text:63

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020