RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1976, Volume 21, Issue 1, Pages 16–33 (Mi tvp3272)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions

S. I. Gusev

Leningrad

Abstract: Let $x_1,…,x_n$ be a sample from a distribution $\mathbf P_{\theta}$ with density $f(x,\theta)$, $\theta\in \Theta\subset R^1$. Let $T_n$ be a Bayesian estimate or a maximum posterior density estimate. The expansions
$$ \sqrt n(T_n-\theta)=\xi_0+\xi_1\frac{1}{\sqrt n}+…+\xi_{k-1}(\frac{1}{\sqrt n})^{k-1}+\widetilde\xi_{k,n}(\frac{1}{\sqrt n})^k, $$
obtained in [1], imply expansions of the moments $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^m$ where $m\ge 1$ is an integer, and expansions of the distribution functions $\mathbf P_{\theta}\{\sqrt n(T_n-\theta)<z\}$. Linnik's problem of calculating the terms of order $1/n$ in the expansion of $\mathbf E_{\theta}(\sqrt n(T_n-\theta))^2$ is solved.

Full text: PDF file (922 kB)

English version:
Theory of Probability and its Applications, 1976, 21:1, 14–33

Bibliographic databases:

Received: 11.03.1975

Citation: S. I. Gusev, “Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions”, Teor. Veroyatnost. i Primenen., 21:1 (1976), 16–33; Theory Probab. Appl., 21:1 (1976), 14–33

Citation in format AMSBIB
\Bibitem{Gus76}
\by S.~I.~Gusev
\paper Asymptotic expansions associated with some statistical estimates in the smooth case. II. Expansions of moments and distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 1
\pages 16--33
\mathnet{http://mi.mathnet.ru/tvp3272}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=413327}
\zmath{https://zbmath.org/?q=an:0403.62020}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 21
\issue 1
\pages 14--33
\crossref{https://doi.org/10.1137/1121002}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3272
  • http://mi.mathnet.ru/eng/tvp/v21/i1/p16

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. M. V. Burnashev, “Investigation of second order properties of statistical estimators in a scheme of independent observations”, Math. USSR-Izv., 18:3 (1982), 439–467  mathnet  crossref  mathscinet  zmath
    2. A. A. Zaikin, “Asymptotic expansion of posterior distribution of parameter centered by a $\sqrt n$-consistent estimate”, J. Math. Sci. (N. Y.), 229:6 (2018), 678–697  mathnet  crossref  mathscinet
    3. Zaikin A.A., “Asymptotic Expansion of D-Risks For Hypothesis Testing in Bernoulli Scheme”, Lobachevskii J. Math., 39:3, SI (2018), 413–423  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:118
    Full text:54

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020