RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1976, Volume 21, Issue 1, Pages 63–80 (Mi tvp3275)  

This article is cited in 2 scientific papers (total in 3 papers)

Automodel probability distributions

Ya. G. Sinaĭ

Moscow

Abstract: As in traditional probability theory, one of the most difficult problems in the theory of phase transitions concerns the limit distributions for sums of a large number of random variables. However, these variables are strongly dependent. Therefore the usual methods cannot be applied. The limit distributions which appear in these problems are invariant under a subgroup of linear endomorphisms, called the renormalization group.
In this paper, we find Gaussian invariant distributions and construct formal series for non-Gaussian ones. Our approach is inspired by the famous renormalization group method widely known in physical literature and developed mainly by K. Wilson, M. Fisher and L. Kadanoff.

Full text: PDF file (996 kB)

English version:
Theory of Probability and its Applications, 1976, 21:1, 64–80

Bibliographic databases:

Received: 24.12.1974

Citation: Ya. G. Sinaǐ, “Automodel probability distributions”, Teor. Veroyatnost. i Primenen., 21:1 (1976), 63–80; Theory Probab. Appl., 21:1 (1976), 64–80

Citation in format AMSBIB
\Bibitem{Sin76}
\by Ya.~G.~Sina{\v\i}
\paper Automodel probability distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 1
\pages 63--80
\mathnet{http://mi.mathnet.ru/tvp3275}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=407959}
\zmath{https://zbmath.org/?q=an:0358.60031}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 21
\issue 1
\pages 64--80
\crossref{https://doi.org/10.1137/1121005}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3275
  • http://mi.mathnet.ru/eng/tvp/v21/i1/p63

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. V. Bogachev, “Distribution of the total spin in the spherical model with long-range potential”, Theoret. and Math. Phys., 34:3 (1978), 247–255  mathnet  crossref  mathscinet
    2. I. A. Kashapov, “Justification of the renormalization-group method”, Theoret. and Math. Phys., 42:2 (1980), 184–186  mathnet  crossref  mathscinet  isi
    3. S. P. Novikov, L. A. Bunimovich, A. M. Vershik, B. M. Gurevich, E. I. Dinaburg, G. A. Margulis, V. I. Oseledets, S. A. Pirogov, K. M. Khanin, N. N. Chentsova, “Yakov Grigor'evich Sinai (on his sixtieth birthday)”, Russian Math. Surveys, 51:4 (1996), 765–778  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:485
    Full text:163

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020