RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2000, Volume 45, Issue 1, Pages 137–162 (Mi tvp328)  

This article is cited in 20 scientific papers (total in 20 papers)

Testing randomness: a suite of statistical procedures

A. L. Rukhin

Department of Mathematics and Statistics, UMBC, MD, USA

Abstract: A suite of procedures designed to test randomness of binary sequences is discussed.

Keywords: correlation polynomial, entropy, distribution of $m$-patterns, $P$-values, $\chi^2$-distribution.

DOI: https://doi.org/10.4213/tvp328

Full text: PDF file (1304 kB)

English version:
Theory of Probability and its Applications, 2000, 45:1, 111–132

Bibliographic databases:

Received: 06.01.2000
Language:

Citation: A. L. Rukhin, “Testing randomness: a suite of statistical procedures”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 137–162; Theory Probab. Appl., 45:1 (2000), 111–132

Citation in format AMSBIB
\Bibitem{Ruk00}
\by A.~L.~Rukhin
\paper Testing randomness: a suite of statistical procedures
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 137--162
\mathnet{http://mi.mathnet.ru/tvp328}
\crossref{https://doi.org/10.4213/tvp328}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1810978}
\zmath{https://zbmath.org/?q=an:1171.62329}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 45
\issue 1
\pages 111--132
\crossref{https://doi.org/10.1137/S0040585X97978087}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000167428900007}


Linking options:
  • http://mi.mathnet.ru/eng/tvp328
  • https://doi.org/10.4213/tvp328
  • http://mi.mathnet.ru/eng/tvp/v45/i1/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Neuenschwander D., Zeuner H., “Generating random numbers of prescribed distribution using physical sources”, Stat. Comput., 13:1 (2003), 5–11  crossref  mathscinet  isi  scopus
    2. Rukhin A.L., “Testing randomness on the basis of the number of different patterns”, Foundations of statistical inference (Shoresh, 2000), Contrib. Statist., Physica, Heidelberg, 2003, 153–165  crossref  mathscinet  zmath  isi
    3. Neuenschwander D., Probabilistic and statistical methods in cryptology, An introduction by selected topics, Lecture Notes in Computer Science, 3028, Springer-Verlag, Berlin, 2004, x+158 pp.  crossref  mathscinet  zmath  isi
    4. González C.M., Larrondo H.A., Rosso O.A., “Statistical complexity measure of pseudorandom bit generators”, Phys. A, 354 (2005), 281–300  crossref  adsnasa  isi  scopus
    5. Shmulevich I., Kauffman S.A., Aldana M., “Eukaryotic cells are dynamically ordered or critical but not chaotic”, Proc. Nat. Acad. Sci. USA, 102:38 (2005), 13439–13444  crossref  adsnasa  isi  scopus
    6. A. L. Rukhin, “Pattern correlation matrices for Markov sequences and tests of randomness”, Theory Probab. Appl., 51:4 (2007), 663–679  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Berrendero J.R., Cuevas A., Vázquez-Grande F., “Testing multivariate uniformity: the distance–to–boundary method”, Canad. J. Statist., 34:4 (2006), 693–707  crossref  mathscinet  zmath  isi  scopus
    8. L'Ecuyer P., Simard R., “TestU01: a C library for empirical testing of random number generators”, ACM Trans. Math. Software, 33:4 (2007), 22  crossref  mathscinet  zmath  isi  scopus
    9. Pozdnyakov V., “On occurrence of subpattern and method of gambling teams”, Ann. Inst. Statist. Math., 60:1 (2008), 193–203  crossref  mathscinet  zmath  isi  scopus
    10. A. L. Rukhin, “Joint distribution of pattern frequencies and multivariate Polya–Aeppli law”, Theory Probab. Appl., 54:2 (2010), 246–260  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Yakovlev M.A., Chugunkov I.V., “Povyshenie effektivnosti otsenochnykh testov dlya psevdosluchainykh posledovatelnostei”, Informatsionnye tekhnologii, 2009, no. 2, 63–65  elib
    12. Zucker Sh., “Detection of Periodicity Based on Serial Dependence of Phase-Folded Data”, Mon. Not. Roy. Astron. Soc., 449:3 (2015), 2723–2733  crossref  adsnasa  isi
    13. Doganaksoy A., Sulak F., Uguz M., Seker O., Akcengiz Z., “New Statistical Randomness Tests Based on Length of Runs”, Math. Probl. Eng., 2015, 626408  crossref  mathscinet  isi  scopus
    14. Assis Gomes C.M., Jelihovisch E., “Proposing a new approach and a rigorous cut-off value for identifying precognition”, Measurement, 93 (2016), 117–125  crossref  isi  scopus
    15. Demirhan H., Bitirim N., “Cryptrndtest: An R Package For Testing the Cryptographic Randomness”, R Journal, 8:1 (2016), 233–247  isi
    16. Sulak F., “New statistical randomness tests: 4-bit template matching tests”, Turk. J. Math., 41:1 (2017), 80–95  crossref  mathscinet  isi  scopus
    17. Demirhan H., Bitirim N., “A Simulation Study on the Accuracy of Cryptographic Randomness Tests”, Simul.-Trans. Soc. Model. Simul. Int., 93:12 (2017), 1113–1122  crossref  isi  scopus
    18. Perez Garcia O.A., “Algorithm For Calculating the Exact Amount of N-BIT Sequences With At Least One Run of Length K (K <= N)”, IEEE Latin Am. Trans., 16:1 (2018), 216–221  crossref  isi  scopus
    19. Sirca S., Horvat M., “Generation of Pseudorandom Numbers”: Sirca, S Horvat, M, Computational Methods in Physics: Compendium For Students, 2Nd Edition, Graduate Texts in Physics, Springer, 2018, 789–804  mathscinet  isi
    20. Zhu Sh., Zhu C., Cui H., Wang W., “A Class of Quadratic Polynomial Chaotic Maps and Its Application in Cryptography”, IEEE Access, 7 (2019), 34141–34152  crossref  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:355
    Full text:145
    First page:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021