|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
On polynomial mixing for SDEs with a gradient-type drift
A. Yu. Veretennikov A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Abstract:
Convergence rate to an invariant distribution and rate of mixing is estimated for a class of stochastic differential equations with nonregular coefficients.
Keywords:
stochastic differential equation, mixing, gradient-type drift, Harnack inequality.
DOI:
https://doi.org/10.4213/tvp329
Full text:
PDF file (264 kB)
English version:
Theory of Probability and its Applications, 2001, 45:1, 160–164
Bibliographic databases:
Received: 20.11.1997
Citation:
A. Yu. Veretennikov, “On polynomial mixing for SDEs with a gradient-type drift”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 163–166; Theory Probab. Appl., 45:1 (2001), 160–164
Citation in format AMSBIB
\Bibitem{Ver00}
\by A.~Yu.~Veretennikov
\paper On polynomial mixing for SDEs with a gradient-type drift
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 163--166
\mathnet{http://mi.mathnet.ru/tvp329}
\crossref{https://doi.org/10.4213/tvp329}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1810979}
\zmath{https://zbmath.org/?q=an:0981.60033}
\transl
\jour Theory Probab. Appl.
\yr 2001
\vol 45
\issue 1
\pages 160--164
\crossref{https://doi.org/10.1137/S0040585X97978099}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000167428900012}
Linking options:
http://mi.mathnet.ru/eng/tvp329https://doi.org/10.4213/tvp329 http://mi.mathnet.ru/eng/tvp/v45/i1/p163
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Hairer M., “How Hot Can a Heat Bath Get?”, Communications in Mathematical Physics, 292:1 (2009), 131–177
-
Veretennikov A., “On Poisson Equations With a Potential in the Whole Space For “Ergodic” Generators”, Theory Probab. Math. Stat., 95 (2016), 178–188
-
O. A. Manita, A. Yu. Veretennikov, “O skhodimosti odnomernoi markovskoi diffuzii k statsionarnoi plotnosti s tyazhelymi khvostami”, Mosc. Math. J., 19:1 (2019), 89–106
|
Number of views: |
This page: | 226 | Full text: | 89 | First page: | 14 |
|