RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1976, Volume 21, Issue 1, Pages 169–171 (Mi tvp3306)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

A continuity criterion for a class of Markov processes

A. D. Bendikov

Rostov-Don

Abstract: The following theorem is proved.
For a standard process $X$ with a standard adjoint process $\widehat X$, the conditions:
1) the sample paths $x_t(\omega)$ of the process $X$ are continuous a.s.,
2) $\forall f,g\in C_K\colon S_f\bigcap S_g=\varnothing$, $\langle P_t,f,g\rangle=o(t)$, $t\downarrow 0$, are equivalent.

Full text: PDF file (207 kB)

English version:
Theory of Probability and its Applications, 1976, 21:1, 169–171

Bibliographic databases:

Received: 18.11.1974

Citation: A. D. Bendikov, “A continuity criterion for a class of Markov processes”, Teor. Veroyatnost. i Primenen., 21:1 (1976), 169–171; Theory Probab. Appl., 21:1 (1976), 169–171

Citation in format AMSBIB
\Bibitem{Ben76}
\by A.~D.~Bendikov
\paper A~continuity criterion for a~class of Markov processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 1
\pages 169--171
\mathnet{http://mi.mathnet.ru/tvp3306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=407998}
\zmath{https://zbmath.org/?q=an:0366.60102}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 21
\issue 1
\pages 169--171
\crossref{https://doi.org/10.1137/1121017}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3306
  • http://mi.mathnet.ru/eng/tvp/v21/i1/p169

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. D. Bendikov, “Markov processes and partial differential equations on a group: the space-homogeneous case”, Russian Math. Surveys, 42:5 (1987), 49–94  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:108
    Full text:53

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020