RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2000, Volume 45, Issue 1, Pages 194–202 (Mi tvp338)  

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

On probablity and moment inequalties for dependent random variables

S. V. Nagaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The paper obtains the upper estimate for the probability that a norm of a sum of dependent random variables with values in the Banach space exceeds a given level. This estimate is principally different from the probability inequalities for sums of dependent random variables known up to now both by form and method of proof. It contains only one of the countable number of mixing coefficients. Due to the introduction of a quantile the estimate does not contain moments. The constants in the estimate are calculated explicitly. As in the case of independent summands, the moment inequalities are derived with the help of the estimate obtained.

Keywords: Banach space, Gaussian random vector, Hilbert space, quantile, uniform mixing coefficient, Hoffman–Jorgensen inequality, Marcinkiewicz–Zygmund inequality, Euler function.

DOI: https://doi.org/10.4213/tvp338

Full text: PDF file (452 kB)

English version:
Theory of Probability and its Applications, 2000, 45:1, 152–160

Bibliographic databases:

Received: 10.03.1998

Citation: S. V. Nagaev, “On probablity and moment inequalties for dependent random variables”, Teor. Veroyatnost. i Primenen., 45:1 (2000), 194–202; Theory Probab. Appl., 45:1 (2000), 152–160

Citation in format AMSBIB
\Bibitem{Nag00}
\by S.~V.~Nagaev
\paper On probablity and moment inequalties for dependent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2000
\vol 45
\issue 1
\pages 194--202
\mathnet{http://mi.mathnet.ru/tvp338}
\crossref{https://doi.org/10.4213/tvp338}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1810984}
\zmath{https://zbmath.org/?q=an:0981.60005}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 45
\issue 1
\pages 152--160
\crossref{https://doi.org/10.1137/S0040585X97978142}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000167428900011}


Linking options:
  • http://mi.mathnet.ru/eng/tvp338
  • https://doi.org/10.4213/tvp338
  • http://mi.mathnet.ru/eng/tvp/v45/i1/p194

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Nagaev, V. I. Chebotarev, “On the Accuracy of Gaussian Approximation in Hilbert Space”, Siberian Adv. Math., 15:1 (2005), 11–73  mathnet  mathscinet  zmath  elib
    2. Theory Probab. Appl., 49:2 (2005), 311–323  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. S. V. Nagaev, “On probability and moment inequalities for supermartingales and martingales”, Theory Probab. Appl., 51:2 (2007), 367–377  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. Szewczak Z.S., “On Limit Theorems for Continued Fractions”, Journal of Theoretical Probability, 22:1 (2009), 239–255  crossref  mathscinet  zmath  isi  scopus
    5. Szewczak Z.S., “Marcinkiewicz laws with infinite moments”, Acta Mathematica Hungarica, 127:1–2 (2010), 64–84  crossref  mathscinet  zmath  isi  elib  scopus
    6. Szewczak Z.S., “On Marcinkiewicz-Zygmund laws”, J Math Anal Appl, 375:2 (2011), 738–744  crossref  mathscinet  zmath  isi  elib  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:190
    Full text:82
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021