RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1995, Volume 40, Issue 2, Pages 458–464 (Mi tvp3493)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

On the extension of the von mises frequency approach and Kolmogorov axiomatic approach to the $p$-adic probability theory

A. Yu. Khrennikov

Moscow State Institute of Electronic Technology (Technical University)

Abstract: The paper considers probabilistic models in which relative frequencies are stabilized in $p$-adic metric. The analog of frequency theory of von Mises probabilities is constructed for such models. As in usual probability theory, the properties of $p$-adic frequency probability are used to formulate the theory on an axiomatic level (the analog of the Kolmogorov axiomatic).

Keywords: rational and $p$-adic numbers, frequencies, statistic stabilization, collection, $p$-adic valued measures

Full text: PDF file (1348 kB)

English version:
Theory of Probability and its Applications, 1995, 40:2, 371–376

Bibliographic databases:

Received: 28.11.1991
Revised: 07.10.1993

Citation: A. Yu. Khrennikov, “On the extension of the von mises frequency approach and Kolmogorov axiomatic approach to the $p$-adic probability theory”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 458–464; Theory Probab. Appl., 40:2 (1995), 371–376

Citation in format AMSBIB
\Bibitem{Khr95}
\by A.~Yu.~Khrennikov
\paper On the extension of the von mises frequency approach and Kolmogorov axiomatic approach to the $p$-adic probability theory
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 2
\pages 458--464
\mathnet{http://mi.mathnet.ru/tvp3493}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1346483}
\zmath{https://zbmath.org/?q=an:0852.60002|0840.60005}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 2
\pages 371--376
\crossref{https://doi.org/10.1137/1140040}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996VE35900017}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3493
  • http://mi.mathnet.ru/eng/tvp/v40/i2/p458

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Khrennikov, Sh. Yamada, “On the concept of random sequence with respect to $p$-adic valued probabilities”, Theory Probab. Appl., 49:1 (2005), 65–76  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Khrennikov A., “p-adic probability theory and its generalizations”, p-ADIC Mathematical Physics, AIP Conference Proceedings, 826, 2006, 105–120  isi
    3. Khrennikov A.Yu., “Generalized probabilities taking values in non–Archimedean fields and in topological groups”, Russian Journal of Mathematical Physics, 14:2 (2007), 142–159  crossref  mathscinet  zmath  adsnasa  isi
    4. V. M. Maksimov, “Finite probabilistic structures”, Discrete Math. Appl., 18:4 (2008), 341–350  mathnet  crossref  crossref  mathscinet  elib
    5. Perrin Y., “A Journey Throughout the History of P-Adic Numbers”, Advances in Ultrametric Analysis, Contemporary Mathematics, 704, eds. Escassut A., PerezGarcia C., Shamseddine K., Amer Mathematical Soc, 2018, 261–272  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:268
    Full text:30
    First page:48

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019