|
Short Communications
Inequalities for a distribution function of a sum of two random variables when marginals are fixed
G. D. Makarov Moscow
Abstract:
The author obtaines exact inequalities for a distribution function of a sum of two random variables in a class of bivariate distributions with fixed marginals.
Full text:
PDF file (702 kB)
English version:
Theory of Probability and its Applications, 1982, 26:4, 803–806
Bibliographic databases:
Received: 17.06.1980
Citation:
G. D. Makarov, “Inequalities for a distribution function of a sum of two random variables when marginals are fixed”, Teor. Veroyatnost. i Primenen., 26:4 (1981), 815–817; Theory Probab. Appl., 26:4 (1982), 803–806
Citation in format AMSBIB
\Bibitem{Mak81}
\by G.~D.~Makarov
\paper Inequalities for a~distribution function of a~sum of two random variables when marginals are fixed
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 4
\pages 815--817
\mathnet{http://mi.mathnet.ru/tvp3510}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=636775}
\zmath{https://zbmath.org/?q=an:0488.60022|0474.60011}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 4
\pages 803--806
\crossref{https://doi.org/10.1137/1126086}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PM42700012}
Linking options:
http://mi.mathnet.ru/eng/tvp3510 http://mi.mathnet.ru/eng/tvp/v26/i4/p815
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 212 | Full text: | 93 |
|