|
This article is cited in 3 scientific papers (total in 3 papers)
Short Communications
Limit distributions of a characteristic of a random mapping
Yu. L. Pavlov Petrozavodsk
Abstract:
Random mappings of a set $X_n=\{1,2,…,n\}$ into $X_n$ is considered. Let $\lambda_r^{(n)}$ be the number of trees with $r$ vertices in such a random mapping. The limit distributions of $\lambda_r^{(n)}$ is studied when $n$, $r\to\infty$.
Full text:
PDF file (1723 kB)
English version:
Theory of Probability and its Applications, 1982, 26:4, 829–834
Bibliographic databases:
Received: 06.04.1979
Citation:
Yu. L. Pavlov, “Limit distributions of a characteristic of a random mapping”, Teor. Veroyatnost. i Primenen., 26:4 (1981), 841–847; Theory Probab. Appl., 26:4 (1982), 829–834
Citation in format AMSBIB
\Bibitem{Pav81}
\by Yu.~L.~Pavlov
\paper Limit distributions of a~characteristic of a~random mapping
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 4
\pages 841--847
\mathnet{http://mi.mathnet.ru/tvp3516}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=636781}
\zmath{https://zbmath.org/?q=an:0488.60019|0477.60012}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 4
\pages 829--834
\crossref{https://doi.org/10.1137/1126092}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1982PM42700018}
Linking options:
http://mi.mathnet.ru/eng/tvp3516 http://mi.mathnet.ru/eng/tvp/v26/i4/p841
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. N. Timashev, “Random mappings of finite sets with a known number of
components”, Theory Probab. Appl., 48:4 (2004), 741–751
-
A. N. Timashov, “Limit theorems for the joint distribution of component sizes of a random mapping with a known number of components”, Discrete Math. Appl., 21:1 (2011), 39–46
-
A. N. Timashov, “Asymptotic expansions for the distribution of the number of components in random mappings and partitions”, Discrete Math. Appl., 21:3 (2011), 291–301
|
Number of views: |
This page: | 126 | Full text: | 54 |
|