RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2009, Volume 54, Issue 4, Pages 671–695 (Mi tvp3534)  

This article is cited in 28 scientific papers (total in 28 papers)

An upper estimate for the absolute constant in the Berry–Esseen inequality

V. Yu. Korolev, I. G. Shevtsova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

DOI: https://doi.org/10.4213/tvp3534

Full text: PDF file (252 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2010, 54:4, 638–658

Bibliographic databases:

Received: 14.09.2009
Revised: 20.10.2009

Citation: V. Yu. Korolev, I. G. Shevtsova, “An upper estimate for the absolute constant in the Berry–Esseen inequality”, Teor. Veroyatnost. i Primenen., 54:4 (2009), 671–695; Theory Probab. Appl., 54:4 (2010), 638–658

Citation in format AMSBIB
\Bibitem{KorShe09}
\by V.~Yu.~Korolev, I.~G.~Shevtsova
\paper An upper estimate for the absolute constant in the Berry--Esseen inequality
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 4
\pages 671--695
\mathnet{http://mi.mathnet.ru/tvp3534}
\crossref{https://doi.org/10.4213/tvp3534}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2759643}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 4
\pages 638--658
\crossref{https://doi.org/10.1137/S0040585X97984449}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000284102200006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952982403}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3534
  • https://doi.org/10.4213/tvp3534
  • http://mi.mathnet.ru/eng/tvp/v54/i4/p671

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. G. Shevtsova, “On the asymptotically exact constants in the Berry–Esseen–Katz inequality”, Theory Probab. Appl., 55:2 (2011), 225–252  mathnet  crossref  crossref  mathscinet  isi
    2. V. Yu. Korolev, I. G. Shevtsova, “A new moment estimate of the convergence rate in the Lyapunov theorem”, Theory Probab. Appl., 55:3 (2011), 505–509  mathnet  crossref  crossref  mathscinet  isi
    3. M. E. Grigoreva, I. G. Shevtsova, “Utochnenie neravenstva Katsa–Berri–Esseena”, Inform. i ee primen., 4:2 (2010), 75–82  mathnet
    4. Nagaev S.V., Chebotarev V.I., “On the bound of proximity of the binomial distribution to the normal one”, Dokl. Math., 83:1 (2011), 19–21  crossref  mathscinet  zmath  isi  elib  elib  scopus
    5. S. V. Nagaev, V. I. Chebotarev, “On estimation of closeness of binomial and normal distributions”, Theory Probab. Appl., 56:2 (2011), 213–239  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    6. I. S. Tyurin, “An improvement of the residual in the Lyapunov theorem”, Theory Probab. Appl., 56:4 (2011), 693–696  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. Arkhangelskii A.N., “O nizhnikh otsenkakh veroyatnostei uklonenii dlya summ sluchainykh velichin Bernulli”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 2011, no. 1, 32–39  mathscinet  elib
    8. Cassidy D.T., “Describing $n$-day returns with Student's $t$-distributions”, Phys. A, 390:15 (2011), 2794–2802  crossref  isi  elib  scopus
    9. Bendlin R., Nielsen J.B., Nordholt P.S., Orlandi C., “Lower and upper bounds for deniable public-key encryption”, Advances in cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., 7073, Springer, Heidelberg, 2011, 125–142  crossref  mathscinet  zmath  isi  scopus
    10. Yu. S. Nefedova, I. G. Shevtsova, “Nonuniform estimates of convergence rate in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 28–59  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    11. Korolev V., Shevtsova I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105  crossref  mathscinet  zmath  isi  elib  scopus
    12. I. G. Shevtsova, “Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables”, Theory Probab. Appl., 57:3 (2013), 468–496  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. Lehmann M., Eisengraeber-Pabst J., Ohser J., Moghiseh A., “Characterization of the Formation of Filter Paper Using the Bartlett Spectrum of the Fiber Structure”, Image Anal. Stereol., 32:2 (2013), 77–87  crossref  mathscinet  zmath  isi  elib  scopus
    14. I. Kontoyiannis, S. Verdú, “Optimal lossless data compression: non-asymptotics and asymptotics”, IEEE Trans. Inform. Theory, 60:2 (2014), 777–795  crossref  mathscinet  zmath  isi  scopus
    15. I. Shevtsova, “On the accuracy of the approximation of the complex exponent by the first terms of its Taylor expansion with applications”, J. Math. Anal. Appl., 418:1 (2014), 185–210  crossref  mathscinet  zmath  isi  elib  scopus
    16. I. G. Shevtsova, “On the absolute constants in the Berry-Esseen-type inequalities”, Dokl. Math., 89:3 (2014), 378–381  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    17. Zhao Sh., Zhang L., Zhou Yu., Liu N., “Signal Fusion-Based Algorithms To Discriminate Between Radar Targets and Deception Jamming in Distributed Multiple-Radar Architectures”, IEEE Sens. J., 15:11 (2015), 6697–6706  crossref  isi  scopus
    18. Zhao Sh., Zhang L., Zhou Yu., Liu N., Liu J., “Discrimination of active false targets in multistatic radar using spatial scattering properties”, IET Radar Sonar Navig., 10:5 (2016), 817–826  crossref  isi  elib  scopus
    19. Cekanavicius V., “Approximation Methods in Probability Theory”, Approximation Methods in Probability Theory, Universitext, Springer International Publishing Ag, 2016, 1–274  crossref  mathscinet  isi
    20. Kalantari K., Kosut O., Sankar L., “On the Fine Asymptotics of Information Theoretic Privacy”, 2016 54Th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Annual Allerton Conference on Communication Control and Computing, IEEE, 2016, 532–539  isi
    21. Kaur E., Wilde M.M., “Upper Bounds on Secret-Key Agreement Over Lossy Thermal Bosonic Channels”, Phys. Rev. A, 96:6 (2017), 062318  crossref  isi  scopus
    22. Shevtsova I., “On the Absolute Constants in Nagaev-Bikelis-Type Inequalities”, Inequalities and Extremal Problems in Probability and Statistics: Selected Topics, ed. Pinelis I., Academic Press Ltd-Elsevier Science Ltd, 2017, 47–102  crossref  mathscinet  isi
    23. Tapiero Ch.S., Vallois P., “Implied Fractional Hazard Rates and Default Risk Distributions”, Probab. Uncertaint. Quant. Risk, 2 (2017), UNSP 2  crossref  mathscinet  isi
    24. Kamjornkittikoon K., Neammanee K., Chaidee N., “Non-Uniform Bounds For the Dermal Patch Problem Via Stein'S Method”, Scienceasia, 43:2 (2017), 135–144  crossref  isi  scopus
    25. Mangia M., Pareschi F., Rovatti R., Setti G., “Low-Cost Security of Iot Sensor Nodes With Rakeness-Based Compressed Sensing: Statistical and Known-Plaintext Attacks”, IEEE Trans. Inf. Forensic Secur., 13:2 (2018), 327–340  crossref  isi  scopus
    26. Fong S.L., Tan V.Y.F., Ozgur A., “On Achievable Rates of Awgn Energy-Harvesting Channels With Block Energy Arrival and Non-Vanishing Error Probabilities”, IEEE Trans. Inf. Theory, 64:3 (2018), 2038–2064  crossref  mathscinet  zmath  isi  scopus
    27. Zolotukhin A. Nagaev S. Chebotarev V., “On a Bound of the Absolute Constant in the Berry-Esseen Inequality For i.i.D. Bernoulli Random Variables”, Mod. Stoch.-THeory Appl., 5:3 (2018), 385–410  crossref  isi
    28. Oskouei S.Kh. Mancini S. Wilde M.M., “Union Bound For Quantum Information Processing”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2221 (2019), 20180612  crossref  mathscinet  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:595
    Full text:63
    References:99

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019