RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1995, Volume 40, Issue 4, Pages 885–888 (Mi tvp3681)  

This article is cited in 20 scientific papers (total in 20 papers)

Short Communications

A refinement of the central limit theorem for sums of independent random indicators

A. Yu. Volkova

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: This paper introduces an estimate of approximation errors for the distribution function of a sum of random indicators. The approximation is demonstrated with the help of the problem of estimating the distribution function of the empty cells number in the equiprobable scheme for group distribution of particles.

Keywords: sums of independent random variables, group distribution of particles.

Full text: PDF file (255 kB)

English version:
Theory of Probability and its Applications, 1995, 40:4, 791–794

Bibliographic databases:

Received: 03.12.1992

Citation: A. Yu. Volkova, “A refinement of the central limit theorem for sums of independent random indicators”, Teor. Veroyatnost. i Primenen., 40:4 (1995), 885–888; Theory Probab. Appl., 40:4 (1995), 791–794

Citation in format AMSBIB
\Bibitem{Vol95}
\by A.~Yu.~Volkova
\paper A refinement of the central limit theorem for sums of independent random indicators
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 4
\pages 885--888
\mathnet{http://mi.mathnet.ru/tvp3681}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1405154}
\zmath{https://zbmath.org/?q=an:0861.60029}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 4
\pages 791--794
\crossref{https://doi.org/10.1137/1140093}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996WD22100023}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3681
  • http://mi.mathnet.ru/eng/tvp/v40/i4/p885

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Choi K.P., Xia A.H., “Approximating the number of successes in independent trials: Binomial versus Poisson”, Annals of Applied Probability, 12:4 (2002), 1139–1148  crossref  mathscinet  zmath  isi
    2. Hong Y., Meeker W.Q., McCalley J.D., “Prediction of Remaining Life of Power Transformers Based on Left Truncated and Right Censored Lifetime Data”, Annals of Applied Statistics, 3:2 (2009), 857–879  crossref  mathscinet  zmath  isi
    3. Hong Y., Meeker W.Q., “Field-Failure and Warranty Prediction Based on Auxiliary Use-Rate Information”, Technometrics, 52:2 (2010), 148–159  crossref  isi
    4. Hong Y., Meeker W.Q., “A Model for Field Failure Prediction Using Dynamic Environmental Data”, Mathematical and Statistical Models and Methods in Reliability: Applications To Medicine, Finance, and Quality Control, Statistics for Industry and Technology, 2010, 223–233  isi
    5. Hong Y., “On Computing the Distribution Function for the Poisson Binomial Distribution”, Comput. Stat. Data Anal., 59 (2013), 41–51  crossref  isi
    6. Hong Y., Meeker W.Q., “Field-Failure Predictions Based on Failure-Time Data with Dynamic Covariate Information”, Technometrics, 55:2 (2013), 135–U50  crossref  isi
    7. Liu X., Saat M.R., Barkan Ch.P.L., “Probability Analysis of Multiple-Tank-Car Release Incidents in Railway Hazardous Materials Transportation”, J. Hazard. Mater., 276 (2014), 442–451  crossref  isi
    8. Daskalakis C. Papadimitriou Ch., “Sparse Covers For Sums of Indicators”, Probab. Theory Relat. Field, 162:3-4 (2015), 679–705  crossref  isi
    9. Daskalakis C., Diakonikolas I., Servedio R.A., “Learning Poisson Binomial Distributions”, Algorithmica, 72:1 (2015), 316–357  crossref  isi
    10. Gonzalez J., Wiberg M., von Davier A.A., “A Note on the Poisson?s Binomial Distribution in Item Response Theory”, Appl. Psychol. Meas., 40:4 (2016), 302–310  crossref  isi  scopus
    11. Castro-Conde I., Doehler S., de Una-Alvarez J., “An Extended Sequential Goodness-of-Fit Multiple Testing Method For Discrete Data”, Stat. Methods Med. Res., 26:5, SI (2017), 2356–2375  crossref  isi
    12. Saracco F. Straka M.J. Di Clemente R. Gabrielli A. Caldarelli G. Squartini T., “Inferring Monopartite Projections of Bipartite Networks: An Entropy-Based Approach”, New J. Phys., 19 (2017), 053022  crossref  isi
    13. Liao P., Wu H., Yu T., “Roc Curve Analysis in the Presence of Imperfect Reference Standards”, Stat. Biosci., 9:1 (2017), 91–104  crossref  isi
    14. Straka M.J., Caldarelli G., Saracco F., “Grand Canonical Validation of the Bipartite International Trade Network”, Phys. Rev. E, 96:2 (2017), 022306  crossref  isi
    15. Biscarri W. Zhao S.D. Brunner R.J., “A Simple and Fast Method For Computing the Poisson Binomial Distribution Function”, Comput. Stat. Data Anal., 122 (2018), 92–100  crossref  isi
    16. Wu S.X., Wai H.-T., Scaglione A., “Estimating Social Opinion Dynamics Models From Voting Records”, IEEE Trans. Signal Process., 66:16 (2018), 4193–4206  crossref  isi
    17. Zolotukhin A. Nagaev S. Chebotarev V., “On a Bound of the Absolute Constant in the Berry-Esseen Inequality For i.i.D. Bernoulli Random Variables”, Mod. Stoch.-THeory Appl., 5:3 (2018), 385–410  crossref  isi
    18. Yuan M., Tang Ch.Y., Hong Y., Yang J., “Disentangling and Assessing Uncertainties in Multiperiod Corporate Default Risk Predictions”, Ann. Appl. Stat., 12:4 (2018), 2587–2617  crossref  mathscinet  zmath  isi  scopus
    19. Bruno M., Saracco F., Squartini T., Duenas M., “Colombian Export Capabilities: Building the Firms-Products Network”, Entropy, 20:10 (2018), 785  crossref  isi  scopus
    20. Becatti C., Caldarelli G., Saracco F., “Entropy-Based Randomization of Rating Networks”, Phys. Rev. E, 99:2 (2019), 022306  crossref  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:256
    Full text:93
    First page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020