RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1964, Volume 9, Issue 2, Pages 205–222 (Mi tvp369)  

Equicontinuous Markov Operators

M. Rosenblatt

Brown University

Abstract: In the paper we study limit properties of equicontinuous (nearly periodic) positive operators which transform continuous functions into continuous ones. The domain of definition of the functions is a compact Hausdorff space $X$. Section 1 contains some preliminary information. In Section 2, positive Markov operators are considered. A decomposition of part of the space $X$ into ergodic sub-parts is obtained, which is analogous to the decomposition of Krylov and Bogolyubov. In the next section eigenfunctions of positive operators are studied which correspond to eigenvalues with maximal absolute values. The theory of Perron-Frobenius is generalized to the situation considered. Section 4 is devoted to the investigation of the asymptotic behavior of the powers $T^n$ of Markov transition operators. Finally, in Section 5, we consider the asymptotic behavior of the convolutions $\nu^n$, $n=1,2,\cdots$, of a regular measure on a compact topological subgroup. Some results obtained in the previous sections are used for the study of this question.

Full text: PDF file (1027 kB)

English version:
Theory of Probability and its Applications, 1964, 9:2, 180–197

Bibliographic databases:

Received: 20.11.1963
Language:

Citation: M. Rosenblatt, “Equicontinuous Markov Operators”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 205–222; Theory Probab. Appl., 9:2 (1964), 180–197

Citation in format AMSBIB
\Bibitem{Ros64}
\by M.~Rosenblatt
\paper Equicontinuous Markov Operators
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 2
\pages 205--222
\mathnet{http://mi.mathnet.ru/tvp369}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=171318}
\zmath{https://zbmath.org/?q=an:0133.40101}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 2
\pages 180--197
\crossref{https://doi.org/10.1137/1109033}


Linking options:
  • http://mi.mathnet.ru/eng/tvp369
  • http://mi.mathnet.ru/eng/tvp/v9/i2/p205

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:367
    Full text:167
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020