RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1994, Volume 39, Issue 1, Pages 211–222 (Mi tvp3771)  

This article is cited in 4 scientific papers (total in 4 papers)

Short Communications

Mean-variance Hedging of options on stocks with Markov volatilities

G. B. Di Masia, Yu. M. Kabanovb, W. J. Runggaldiera

a Universita di Padova, Dipartimento di Matematica Рurа ed Applicata, Padova, Italy
b Central Economics and Mathematics Institute, RAS

Abstract: We consider the problem of hedging an European call option for a diffusion model where drift and volatility are functions of a Markov jump process. The market is thus incomplete implying that perfect hedging is not possible. To derive a hedging strategy, we follow the approach based on the idea of hedging under a mean-variance criterion as suggested by Fцllmer, Sondermann, and Schweizer. This also leads to a generalization of the Black–Scholes formula for the corresponding option price which, for the simplest case when the jump process has only two states, is given by an explicit expression involving the distribution of the integrated telegraph signal (known also as the Kac process). In the Appendix we derive this distribution by simple considerations based on properties of the order statistics.

Keywords: Black–Scholes formula, call option, stochastic volatility, incomplete market, meanvariance hedging, Kac process.

Full text: PDF file (593 kB)

English version:
Theory of Probability and its Applications, 1994, 39:1, 172–182

Bibliographic databases:

Received: 05.07.1993

Citation: G. B. Di Masi, Yu. M. Kabanov, W. J. Runggaldier, “Mean-variance Hedging of options on stocks with Markov volatilities”, Teor. Veroyatnost. i Primenen., 39:1 (1994), 211–222; Theory Probab. Appl., 39:1 (1994), 172–182

Citation in format AMSBIB
\Bibitem{Di KabRun94}
\by G.~B.~Di Masi, Yu.~M.~Kabanov, W.~J.~Runggaldier
\paper Mean-variance Hedging of options on stocks with Markov volatilities
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 1
\pages 211--222
\mathnet{http://mi.mathnet.ru/tvp3771}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1348196}
\zmath{https://zbmath.org/?q=an:0836.60075}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 1
\pages 172--182
\crossref{https://doi.org/10.1137/1139008}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RH52800008}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3771
  • http://mi.mathnet.ru/eng/tvp/v39/i1/p211

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Proc. Steklov Inst. Math., 237 (2002), 192–202  mathnet  mathscinet  zmath
    2. V. M. Radchenko, “Variance-minimizing hedging in the model with jumps at deterministic moments”, Theory Probab. Appl., 51:3 (2007), 536–545  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Wang Yu., Yin G., “Quantile Hedging for Guaranteed Minimum Death Benefits with Regime Switching”, Stoch. Anal. Appl., 30:5 (2012), 799–826  crossref  isi
    4. Palmowski Z. Stettner L. Sulima A., “Optimal Portfolio Selection in An Ito-Markov Additive Market”, Risks, 7:1 (2019), 34  crossref  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:480
    Full text:39
    First page:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019