|
This article is cited in 5 scientific papers (total in 6 papers)
Short Communications
Some Characteristic Properties of Stochastic Gaussian Processes
A. M. Veršik Leningrad
Abstract:
In the paper spherically invariant processes are defined. The characteristic function of these processes $(\xi(t))$ in accordance with Shonberg's theorem [1] is of the form
$$
\chi(\eta)\equiv{\mathbf M}e^{i\eta}=f({\mathbf D}\eta)=\int_0^\infty e^{-\gamma{\mathbf D}\eta} G(d\gamma),
$$
$\eta=\int\xi(t)\eta(t) dt$, where $G$ is some measure on $[0,\infty)$. Only if the process is spherically invariant, then 1) every extrapolation problem has a linear solution, 2) every functional transformation leaving the correlation function of the process invariant retains its measure in the space of realizations.If a spherically invariant process is stationary and ergodic, then it is Gaussian.
Full text:
PDF file (352 kB)
English version:
Theory of Probability and its Applications, 1964, 9:2, 353–356
Bibliographic databases:
Received: 21.10.1963
Citation:
A. M. Veršik, “Some Characteristic Properties of Stochastic Gaussian Processes”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 390–394; Theory Probab. Appl., 9:2 (1964), 353–356
Citation in format AMSBIB
\Bibitem{Ver64}
\by A.~M.~Ver{\v s}ik
\paper Some Characteristic Properties of Stochastic Gaussian Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 2
\pages 390--394
\mathnet{http://mi.mathnet.ru/tvp388}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=165577}
\zmath{https://zbmath.org/?q=an:0141.15203}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 2
\pages 353--356
\crossref{https://doi.org/10.1137/1109053}
Linking options:
http://mi.mathnet.ru/eng/tvp388 http://mi.mathnet.ru/eng/tvp/v9/i2/p390
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. I. Arnol'd, M. Sh. Birman, I. M. Gel'fand, I. A. Ibragimov, S. V. Kerov, A. A. Kirillov, O. A. Ladyzhenskaya, G. A. Leonov, A. A. Lodkin, S. P. Novikov, Ya. G. Sinai, M. Z. Solomyak, L. D. Faddeev, “Anatolii Moiseevich Vershik (on his sixtieth birthday)”, Russian Math. Surveys, 49:3 (1994), 207–221
-
Theory Probab. Appl., 61:3 (2017), 375–388
-
Theory Probab. Appl., 62:2 (2018), 335–338
-
Ll'inskii A., “On Notions of Q-Independence and Q-Identical Distributiveness”, Stat. Probab. Lett., 140 (2018), 33–36
-
Theory Probab. Appl., 63:3 (2019), 393–407
-
Zaitsev A.Yu. Kagan A.M. Nikitin Ya.Yu., “Toward the History of the St. Petersburg School of Probability and Statistics. Iv. Characterization of Distributions and Limit Theorems in Statistics”, Vestn. St Petersb. Univ.-Math., 52:1 (2019), 36–53
|
Number of views: |
This page: | 600 | Full text: | 226 | First page: | 12 |
|