RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2001, Volume 46, Issue 1, Pages 94–116 (Mi tvp3953)  

This article is cited in 18 scientific papers (total in 18 papers)

Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields

J. D. Masona, Xiao Yiminb

a University of Utah, Department of Mathematics
b Michigan State University, Department of Statistics and Probability

Abstract: We study the Hausdorff dimension of the image and graph set, hitting probabilities, transience, and other sample path properties of certain isotropic operator-self-similar Gaussian random fields $X = \{X(t), t \in{\mathbf R}^N\}$ with stationary increments, including multiparameter operator fractional Brownian motion. Our results show that if $X({\mathbf 1})$, where ${\mathbf 1}=(1,0,…,0)\in{\mathbf R}^N$, is full, then many of such sample path properties are completely determined by the real parts of the eigenvalues of the self-similarity exponent $D$.

Keywords: operator-self-similar Gaussian random fields, image, graph, Hausdorff dimension, polar set, transience.

DOI: https://doi.org/10.4213/tvp3953

Full text: PDF file (2271 kB)

English version:
Theory of Probability and its Applications, 2002, 46:1, 58–78

Bibliographic databases:

Received: 07.04.1999
Language:

Citation: J. D. Mason, Xiao Yimin, “Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields”, Teor. Veroyatnost. i Primenen., 46:1 (2001), 94–116; Theory Probab. Appl., 46:1 (2002), 58–78

Citation in format AMSBIB
\Bibitem{MasXia01}
\by J.~D.~Mason, Xiao~Yimin
\paper Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 1
\pages 94--116
\mathnet{http://mi.mathnet.ru/tvp3953}
\crossref{https://doi.org/10.4213/tvp3953}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1968707}
\zmath{https://zbmath.org/?q=an:0993.60039}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 1
\pages 58--78
\crossref{https://doi.org/10.1137/S0040585X97978749}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000174464700004}


Linking options:
  • http://mi.mathnet.ru/eng/tvp3953
  • https://doi.org/10.4213/tvp3953
  • http://mi.mathnet.ru/eng/tvp/v46/i1/p94

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Xiao Yimin, “The packing measure of the trajectories of multiparameter fractional Brownian motion”, Math. Proc. Cambridge Philos. Soc., 135:2 (2003), 349–373  crossref  mathscinet  zmath  adsnasa  isi  scopus
    2. Benson D.A., Meerschaert M.M., Baeumer B., Scheffler H.P., “Aquifer operator scaling and the effect on solute mixing and dispersion”, Water Resour. Res., 42:1 (2006), W01415, 18 pp.  crossref  adsnasa  isi  scopus
    3. Wu DongSheng, Xiao YiMin, “Uniform dimension results for Gaussian random fields”, Sci. China Ser. A, 52:7 (2009), 1478–1496  crossref  mathscinet  zmath  isi  scopus
    4. Biermé H., Lacaux C., “Holder regularity for operator scaling stable random fields”, Stochastic Process. Appl., 119:7 (2009), 2222–2248  crossref  mathscinet  zmath  isi  scopus
    5. Ayache A., Roueff F., Xiao Yimin, “Linear fractional stable sheets: Wavelet expansion and sample path properties”, Stochastic Process. Appl., 119:4 (2009), 1168–1197  crossref  mathscinet  zmath  isi  scopus
    6. Xiao Yimin, “Sample path properties of anisotropic Gaussian random fields”, A minicourse on stochastic partial differential equations, Lecture Notes in Math., 1962, Springer, Berlin, 2009, 145–212  crossref  mathscinet  zmath  isi  scopus
    7. Didier G., Pipiras V., “Integral representations and properties of operator fractional Brownian motions”, Bernoulli, 17:1 (2011), 1–33  crossref  mathscinet  zmath  isi  scopus
    8. Li Yu., Xiao Y., “Multivariate operator-self-similar random fields”, Stochastic Process Appl, 121:6 (2011), 1178–1200  crossref  mathscinet  zmath  isi  scopus
    9. Chen ZhenLong, Xiao YiMin, “On Intersections of Independent Anisotropic Gaussian Random Fields”, Sci. China-Math., 55:11 (2012), 2217–2232  crossref  mathscinet  zmath  isi  scopus
    10. Didier G., Pipiras V., “Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions”, J. Theor. Probab., 25:2 (2012), 353–395  crossref  mathscinet  zmath  isi  scopus
    11. Dai H., “Convergence in Law to Operator Fractional Brownian Motions”, J. Theor. Probab., 26:3 (2013), 676–696  crossref  mathscinet  zmath  isi  scopus
    12. Dai H.Sh., “Convergence in Law to Operator Fractional Brownian Motion of Riemann-Liouville Type”, Acta. Math. Sin.-English Ser., 29:4 (2013), 777–788  crossref  mathscinet  zmath  isi  scopus
    13. Bierme H., Lacaux C., “Modulus of Continuity of Some Conditionally Sub-Gaussian Fields, Application To Stable Random Fields”, Bernoulli, 21:3 (2015), 1719–1759  crossref  mathscinet  zmath  isi  scopus
    14. Dai H., Shen G., Kong L., “Limit Theorems For Functionals of Gaussian Vectors”, Front. Math. China, 12:4 (2017), 821–842  crossref  mathscinet  zmath  isi  scopus
    15. Pipiras V. Taqqu M., “Long-Range Dependence and Self-Similarity”, Long-Range Dependence and Self-Similarity, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ Press, 2017, 1–668  crossref  mathscinet  zmath  isi
    16. Soenmez E., “The Hausdorff Dimension of Multivariate Operator-Self-Similar Gaussian Random Fields”, Stoch. Process. Their Appl., 128:2 (2018), 426–444  crossref  mathscinet  zmath  isi  scopus
    17. Dai H., Shen G., Xia L., “Operator Fractional Brownian Sheet and Martingale Differences”, Bull. Korean. Math. Soc., 55:1 (2018), 9–23  crossref  mathscinet  zmath  isi  scopus
    18. Abry P., Didier G., “Wavelet Eigenvalue Regression For N-Variate Operator Fractional Brownian Motion”, J. Multivar. Anal., 168 (2018), 75–104  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:181
    Full text:52

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019