RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1972, Volume 17, Issue 1, Pages 129–142 (Mi tvp4194)  

This article is cited in 1 scientific paper (total in 1 paper)

Random Mappings and Decompositions of Finite Sets

B. A. Sevast'yanov

Moscow

Abstract: Let $X=\{1,2,…,n\}$ be a finite set,
\begin{equation} X=S_1+\cdots+S_r \end{equation}
be a partition of $X$.
\begin{equation} \Phi=\begin{pmatrix} 1 & 2 & …& n
\varphi_1 & \varphi_2 & \ldots & \varphi_n
\end{pmatrix} \end{equation}
be a permutation of elements of $X$, $N(A)$ be the number of elements of any finite set $A$. We denote by $R(s_1,…,s_r)$ the set of all partitions (1) with $N(S_j)=s_j$, $j=1,…,r$, and by $T(z_1,…,z_m)$ the set of all permutations (2) with cycles of lengths $z_1\le z_2\le…\le z_m$.

Full text: PDF file (1583 kB)

English version:
Theory of Probability and its Applications, 1972, 17:1, 132–145

Bibliographic databases:

Received: 26.08.1971

Citation: B. A. Sevast'yanov, “Random Mappings and Decompositions of Finite Sets”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 129–142; Theory Probab. Appl., 17:1 (1972), 132–145

Citation in format AMSBIB
\Bibitem{Sev72}
\by B.~A.~Sevast'yanov
\paper Random Mappings and Decompositions of Finite Sets
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 129--142
\mathnet{http://mi.mathnet.ru/tvp4194}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=303641}
\zmath{https://zbmath.org/?q=an:0267.60007}
\transl
\jour Theory Probab. Appl.
\yr 1972
\vol 17
\issue 1
\pages 132--145
\crossref{https://doi.org/10.1137/1117010}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4194
  • http://mi.mathnet.ru/eng/tvp/v17/i1/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Saussol B., “An Introduction to Quantitative Poincaré Recurrence in Dynamical Systems”, Rev Math Phys, 21:8 (2009), 949–979  crossref  mathscinet  zmath  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:130
    Full text:76

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020