Teoriya Veroyatnostei i ee Primeneniya
General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Teor. Veroyatnost. i Primenen.:

Personal entry:
Save password
Forgotten password?

Teor. Veroyatnost. i Primenen., 1964, Volume 9, Issue 4, Pages 710–718 (Mi tvp422)  

This article is cited in 38 scientific papers (total in 38 papers)

Short Communications

Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes

V. P. Čistyakov


Abstract: Let $\xi_1,…,\xi_n,…$ be independent random positive variables and let ${\mathbf P}\{\xi_k<t\}=G(t)$, $k=1,…,n,…$ Let us denote
$$ {\mathbf P}\{\xi_1+…+\xi_n<t\}=G_n(t). $$

$$ \lim_{t\to\infty}\frac{1-G_n(t)}{1-G(t)}=n,\qquad n=1,2,3,…, $$
and only if
$$ \lim_{t\to\infty}\frac{1-G_2(t)}{1-G(t)}=2. $$
This theorem is useful in some investigations of age-dependent branching processes.

Full text: PDF file (448 kB)

English version:
Theory of Probability and its Applications, 1964, 9:4, 640–648

Bibliographic databases:

Received: 07.01.1964

Citation: V. P. Čistyakov, “Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes”, Teor. Veroyatnost. i Primenen., 9:4 (1964), 710–718; Theory Probab. Appl., 9:4 (1964), 640–648

Citation in format AMSBIB
\by V.~P.~{\v C}istyakov
\paper Theorem on Sums of Independent Random Positive Variables and its Applications to Branching Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 4
\pages 710--718
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 4
\pages 640--648

Linking options:
  • http://mi.mathnet.ru/eng/tvp422
  • http://mi.mathnet.ru/eng/tvp/v9/i4/p710

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Watanabe T., “Subexponential Densities of Infinitely Divisible Distributions on the Half-Line”, Lith. Math. J.  crossref  isi
    2. A. L. Yakymiv, “Sufficient conditions for the subexponential property of the convolution of two distributions”, Math. Notes, 58:5 (1995), 1227–1230  mathnet  crossref  mathscinet  zmath
    3. A. L. Yakymiv, “Some properties of subexponential distributions”, Math. Notes, 62:1 (1997), 116–121  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. G. Sh. Tsitsiashvili, V. V. Kalashnikov, “Two-Sided Bounds of Random Sums with Subexponential Summands”, Problems Inform. Transmission, 35:3 (1999), 248–258  mathnet  mathscinet  zmath
    5. A. L. Yakymiv, “Explicit estimates for the asymptotics of subexponential infinitely divisible distribution functions”, Math. Notes, 67:2 (2000), 239–244  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. A. Baltrūnas, “On the Subexponential Property of a Class of Random Variables”, Math. Notes, 69:4 (2001), 571–574  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. A. V. Lebedev, “Extremes of Subexponential Shot Noise”, Math. Notes, 71:2 (2002), 206–210  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. M. S. Sgibnev, “Tochnaya asimptotika mery vosstanovleniya v “kriticheskom” sluchae”, Fundament. i prikl. matem., 8:3 (2002), 911–920  mathnet  mathscinet  zmath
    9. A. V. Lebedev, “Maxima of Subexponential Shot-Noise Fields with Finite Radius of Influence”, Math. Notes, 73:2 (2003), 240–243  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. A. Baltrūnas, A. L. Yakymiv, “Second-order asymptotic behavior of subexponential infinitely divisible distributions”, Theory Probab. Appl., 48:4 (2004), 703–710  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Tang Q.H., Tsitsiashvili G., “Precise estimates for the ruin probability in finite horizon in a discrete–time model with heavy–tailed insurance and financial risks”, Stochastic Processes and Their Applications, 108:2 (2003), 299–325  isi
    12. V. V. Shneer, “Estimates for the distributions of the sums of subexponential random variables”, Siberian Math. J., 45:6 (2004), 1143–1158  mathnet  crossref  mathscinet  zmath  isi
    13. A. V. Lebedev, “Maxima of independent sums in the presence of heavy tails”, Theory Probab. Appl., 49:4 (2005), 700–703  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. Tang Q.H., Tsitsiashvili G., “Finite– and infinite–time ruin probabilities in the presence of stochastic returns on investments”, Advances in Applied Probability, 36:4 (2004), 1278–1299  crossref  isi
    15. Pakes A.G., “Convolution equivalence and infinite divisibility”, Journal of Applied Probability, 41:2 (2004), 407–424  crossref  isi
    16. Denisov D., Foss S., Korshunov D., “Tail asymptotics for the supremum of a random walk when the mean is not finite”, Queueing Systems, 46:1–2 (2004), 15–33  isi
    17. Tang Q.H., “Uniform estimates for the tail probability of maxima over finite horizons with subexponential tails”, Probability in the Engineering and Informational Sciences, 18:1 (2004), 71–86  isi
    18. Su C., Tang Q.H., “Heavy-tailed distributions and their applications”, Probability, Finance and Insurance, 2004, 218–236  isi
    19. Shimura T., Watanabe T., “Infinite divisibility and generalized subexponentiality”, Bernoulli, 11:3 (2005), 445–469  crossref  isi
    20. M. S. Sgibnev, “Exact asymptotic expansions for solutions of multi-dimensional renewal equations”, Izv. Math., 70:2 (2006), 363–383  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    21. V. V. Shneer, “Estimates for interval probabilities of the sums of random variables with locally subexponential distributions”, Siberian Math. J., 47:4 (2006), 779–786  mathnet  crossref  mathscinet  zmath  isi
    22. Tang Q.H., “On convolution equivalence with applications”, Bernoulli, 12:3 (2006), 535–549  crossref  isi
    23. Foss S., Korshunov D., “Lower limits and equivalences for convolution tails”, Annals of Probability, 35:1 (2007), 366–383  crossref  isi
    24. Denisov D., Foss S., Korshunov D., “On lower limits and equivalences for distribution tails of randomly stopped sums”, Bernoulli, 14:2 (2008), 391–404  crossref  isi
    25. Jiang J., Tang Q., “Reinsurance under the LCR and ECOMOR treaties with emphasis on light–tailed claims”, Insurance Mathematics & Economics, 43:3 (2008), 431–436  crossref  isi
    26. Chen G., Wang Yu., Cheng F., “The Uniform Local Asymptotics of the Overshoot of a Random Walk with Heavy–Tailed Increments”, Stochastic Models, 25:3 (2009), 508–521  crossref  isi
    27. Cui Zh., Wang Yu., Wang K., “Asymptotics for the Moments of the Overshoot and Undershoot of a Random Walk”, Advances in Applied Probability, 41:2 (2009), 469–494  crossref  isi
    28. S. V. Nagaev, “On conditions sufficient for subexponentiality”, Theory Probab. Appl., 55:1 (2011), 153–164  mathnet  crossref  crossref  mathscinet  isi
    29. Wang Yu., Cui Zh., Wang K., Ma X., “Uniform Asymptotics of the Finite-Time Ruin Probability for All Times”, J. Math. Anal. Appl., 390:1 (2012), 208–223  crossref  isi
    30. Chen Ya., Wang Yu., Wang K., “Asymptotic Results for Ruin Probability of a Two-Dimensional Renewal Risk Model”, Stoch. Anal. Appl., 31:1 (2013), 80–91  crossref  isi
    31. Wang K. Yang Ya. Yu Ch., “Estimates for the Overshoot of a Random Walk with Negative Drift and Non-Convolution Equivalent Increments”, Stat. Probab. Lett., 83:6 (2013), 1504–1512  crossref  isi
    32. Wang K., “The Uniform Asymptotics of the Overshoot of a Random Walk with Light-Tailed Increments”, Commun. Stat. – Theory Methods, 42:5 (2013), 830–837  crossref  isi
    33. Lin J., “Second Order Tail Behaviour For Heavy-Tailed Sums and Their Maxima With Applications To Ruin Theory”, Extremes, 17:2 (2014), 247–262  crossref  isi
    34. Cui Zh., Wang Yu., Wang K., “the Uniform Local Asymptotics For a Levy Process and Its Overshoot and Undershoot”, Commun. Stat.-Theory Methods, 45:4 (2016), 1156–1181  crossref  isi
    35. Liu X., Gao Q., Guo E., “Uniform asymptotics for ruin probability of a two-dimensional dependent renewal risk model”, Commun. Stat.-Theory Methods, 45:20 (2016), 6045–6060  crossref  mathscinet  zmath  isi  elib  scopus
    36. Buraczewski D. Damek E. Mikosch T., “Stochastic Models With Power-Law Tails: the Equation X = Ax + B”, Stochastic Models With Power-Law Tails: the Equation X = Ax + B, Springer Series in Operations Research and Financial Engineering, Springer Int Publishing Ag, 2016, 1–320  crossref  isi
    37. Bernackaite E., Siaulys J., “The finite-time ruin probability for an inhomogeneous renewal risk model”, J. Ind. Manag. Optim., 13:1 (2017), 207–222  crossref  mathscinet  isi
    38. Majumdar S.N., Pal A., Schehr G., “Extreme Value Statistics of Correlated Random Variables: a Pedagogical Review”, Phys. Rep.-Rev. Sec. Phys. Lett., 840 (2020), 1–32  crossref  isi
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:583
    Full text:261
    First page:2

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021