RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 1972, Volume 17, Issue 4, Pages 619–639 (Mi tvp4317)  

This article is cited in 3 scientific papers (total in 3 papers)

Gibbs state describing coexistence of phases for a three-dimensional Ising model

R. L. Dobrushin

Moscow

Abstract: We consider a three-dimensional Ising model with critical value of chemical potential and sufficiently small temperature. We prove the existence of an infinite set of different Gibbsian states in infinite volume. All these states are not translation invariant. Physically, they correspond to the situation where there are simultaneously two phases and their bound fluctuates near some plane. The states of such a type are impossible in the two-dimensional case.

Full text: PDF file (3177 kB)

English version:
Theory of Probability and its Applications, 1973, 17:4, 582–600

Bibliographic databases:

Received: 24.03.1972

Citation: R. L. Dobrushin, “Gibbs state describing coexistence of phases for a three-dimensional Ising model”, Teor. Veroyatnost. i Primenen., 17:4 (1972), 619–639; Theory Probab. Appl., 17:4 (1973), 582–600

Citation in format AMSBIB
\Bibitem{Dob72}
\by R.~L.~Dobrushin
\paper Gibbs state describing coexistence of phases for a three-dimensional Ising model
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 4
\pages 619--639
\mathnet{http://mi.mathnet.ru/tvp4317}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=421546}
\zmath{https://zbmath.org/?q=an:0275.60119}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 4
\pages 582--600
\crossref{https://doi.org/10.1137/1117073}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4317
  • http://mi.mathnet.ru/eng/tvp/v17/i4/p619

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. L. Kuz'min, “Small-parameter series for the surface tension in a lattice model”, Theoret. and Math. Phys., 76:3 (1988), 961–967  mathnet  crossref  mathscinet  isi
    2. R. A. Minlos, “R. L. Dobrushin – one of the founders of modern mathematical physics”, Russian Math. Surveys, 52:2 (1997), 251–256  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. G. Basuev, “Ising model in half-space: A series of phase transitions in low magnetic fields”, Theoret. and Math. Phys., 153:2 (2007), 1539–1574  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:290
    Full text:136

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020