RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teor. Veroyatnost. i Primenen., 2011, Volume 56, Issue 4, Pages 742–772 (Mi tvp4421)  

This article is cited in 8 scientific papers (total in 8 papers)

$q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes

P. J. Szabłowski

Warsaw University of Technology

DOI: https://doi.org/10.4213/tvp4421

Full text: PDF file (277 kB)
References: PDF file   HTML file

English version:
Theory of Probability and its Applications, 2011, 56:4, 634–659

Bibliographic databases:

Received: 03.08.2010
Revised: 24.07.2011
Language:

Citation: P. J. Szabłowski, “$q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes”, Teor. Veroyatnost. i Primenen., 56:4 (2011), 742–772; Theory Probab. Appl., 56:4 (2011), 634–659

Citation in format AMSBIB
\Bibitem{Sza11}
\by P.~J.~Szab\l owski
\paper $q$-Wiener and $(\alpha, q)$-Ornstein--Uhlenbeck processes. A generalization of known processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2011
\vol 56
\issue 4
\pages 742--772
\mathnet{http://mi.mathnet.ru/tvp4421}
\crossref{https://doi.org/10.4213/tvp4421}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3137067}
\elib{http://elibrary.ru/item.asp?id=20732932}
\transl
\jour Theory Probab. Appl.
\yr 2011
\vol 56
\issue 4
\pages 634--659
\crossref{https://doi.org/10.1137/S0040585X97985674}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000311207400007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873696401}


Linking options:
  • http://mi.mathnet.ru/eng/tvp4421
  • https://doi.org/10.4213/tvp4421
  • http://mi.mathnet.ru/eng/tvp/v56/i4/p742

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. J. Szabłowski, “Befriending Askey–Wilson polynomials”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17:3 (2014), 1450015, 25 pp.  crossref  mathscinet  zmath  isi
    2. P. J. Szabłowski, “A few remarks on quadratic harnesses”, J. Difference Equ. Appl., 20:4 (2014), 586–609  crossref  mathscinet  zmath  isi
    3. Bryc W., “On Integration With Respect To the Q-Brownian Motion”, Stat. Probab. Lett., 94 (2014), 257–266  crossref  mathscinet  zmath  isi
    4. Szablowski P.J., “Poisson-Mehler summation formula Around Poisson-Mehler summation formula”, Hacet. J. Math. Stat., 45:6 (2016), 1729–1742  crossref  mathscinet  zmath  isi  scopus
    5. Wang Y., Stat. Probab. Lett., 118 (2016), 110–116  crossref  mathscinet  zmath  isi  scopus
    6. Bryc W., Wang Y., “The Local Structure of Q-Gaussian Processes”, Prob. Math. Stat., 36:2 (2016), 335–352  mathscinet  zmath  isi
    7. Szablowski P.J., “On Stationary Markov Processes With Polynomial Conditional Moments”, Stoch. Anal. Appl., 35:5 (2017), 852–872  crossref  mathscinet  zmath  isi
    8. Wang Y., “Extremes of Q-Ornstein-Uhlenbeck Processes”, Stoch. Process. Their Appl., 128:9 (2018), 2979–3005  crossref  mathscinet  zmath  isi  scopus
  • Теория вероятностей и ее применения Theory of Probability and its Applications
    Number of views:
    This page:181
    Full text:55
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020